Kiesewetter, D., Schenke, R. P., Maiterth, R., Brähler, M., Chirvi, M., Weikert, N., & Woitok, N. (2023). Überprüfung der Übergangsregelung zur nachgelagerten Besteuerung nach dem AltEinkG im Hinblick auf eine »doppelte Besteuerung« unter Berücksichtigung der aktuellen BFH-Rechtsprechung.
Minhas, N. M., Börstler, J., & Petersen, K. (2023). Checklists to support decision-making in regression testing. Journal of Systems and Software, 202, 111697.
Petersen, K., Wasse, A., Cruse, T., Sietas, J., & Gerken, J. M. (2023). On the Impact of a Business Intelligence System on Analysis Effort: A Case Study of Flensburg Municipality in Germany. Anwendungen und Konzepte der Wirtschaftsinformatik (AKWI), (18), 13.
Guo, F., Schlipf, D., Zhu, H., Platt, A., Cheng, P. W., & Thomas, F. (2022). Updates on the OpenFAST Lidar Simulator. In Journal of Physics: Conference Series (Bd. 2265, S. 042030). http://doi.org/10.1088/1742-6596/2265/4/042030 (Original work published 2026)
Steinacker, H., Lemmer, F., Raach, S., Schlipf, D., & Cheng, P. W. (2022). Efficient multibody modeling of offshore wind turbines with flexible substructures. In Journal of Physics: Conference Series (Bd. 2265, S. 042007). http://doi.org/10.1088/1742-6596/2265/4/042007 (Original work published 2026)
Miquelez-Madariaga, I., Schlipf, D., Elso, J., Guo, F., & de Corcuera, A. D. \iaz. (2022). LIDAR based multivariable $\mathscrH_\infty$ feedforward control for load reduction in wind turbines. In Journal of Physics: Conference Series (Bd. 2265, S. 022070). http://doi.org/10.1088/1742-6596/2265/2/022070 (Original work published 2026)
Alhrshy, L., & Jauch, C. (2022). A Resource-Efficient Design for a Flexible Hydraulic-Pneumatic Flywheel in Wind Turbine Blades. Journal of Physics: Conference Series, 2265, 032018. http://doi.org/10.1088/1742-6596/2265/3/032018 (Original work published 2026)
Abstract
The utilization of renewable energy resources significantly increases in order to reduce the impact of climate change. Wind turbines are one of the most important renewable energy sources and have an important role to play in power generation. They do, however, have to serve the increasingly variable demands of the grid. Some of these demands cannot be satisfied with the standard control mechanisms of state-of-the-art wind turbines. A hydraulic-pneumatic flywheel in a wind turbine rotor is one mechanism which, in addition to its various grid services, can also reduce the mechanical loads on the structure of a wind turbine. However, the installation of such a flywheel into rotor blades increases the weight of the blades. This paper focusses on the development of a design method for reducing the additional mass of the flywheel. This method incorporates the piston accumulators of the flywheel in the blade support structure, which allows for the replacement of parts of the blade spar caps with composite material from the piston accumulators. This enables the flywheel to be installed into the rotor blades without making the wind turbine significantly heavier.