Imhoff, J. F., & Labes, A. (2014). Natural products from marine fungi for the treatment of cancer. In 4. Gemeinsame Jahrestagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie (DGHM) e. V. zusammen mit der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) e. V. Abgerufen von http://oceanrep.geomar.de/26369/
Bin Ali, N., & Petersen, K. (2014). Evaluating strategies for study selection in systematic literature studies. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (S. 1–4).
Schlipf, D., Schlipf, D. J., & Kühn, M. (2013). Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy, 16, 1107–1129. http://doi.org/10.1002/we.1533 (Original work published 2025)
Schlipf, D., Mann, J., & Cheng, P. W. (2013). Model of the correlation between lidar systems and wind turbines for lidar-assisted control. Journal of Atmospheric and Oceanic Technology, 30, 2233–2240. http://doi.org/10.1175/jtech-d-13-00077.1 (Original work published 2025)
Löhlein, B., & Huth, G. (2013). Hochtourige PM-Synchronmotoren in SMC-Technik. In ETG-Fachbericht 139 zum Internationalen ETG-Kongress. Berlin: VDE Verlag GmbH. (Original work published 2025)
Schlipf, D., & Cheng, P. W. (2013). Adaptive feedforward control for wind turbines. at - Automatisierungstechnik, 61, 329–338. http://doi.org/10.1524/auto.2013.0029 (Original work published 2025)
Schlipf, D., Fleming, P., Kapp, S., Scholbrock, A., Haizmann, F., Belen, F., … Cheng, P. W. (2013). Direct speed control using LIDAR and turbine data. In American Control Conference (S. 2208–2213). Washington, DC, USA. http://doi.org/10.1109/acc.2013.6580163 (Original work published 2025)
Schuler, S., Schlipf, D., Cheng, P. W., & Allgöwer, F. (2013). $\ell_1$- optimal control of large wind turbines. IEEE Transactions on Control Systems Technology, 21, 1079–1089. http://doi.org/10.1109/tcst.2013.2261068 (Original work published 2025)
Schlipf, D., Sandner, F., Raach, S., Matha, D., & Cheng, P. W. (2013). Nonlinear model predictive control of floating wind turbines. In 23rd International Ocean and Polar Engineering Conference (S. 440–447). Anchorage, AK, USA. http://doi.org/10.18419/opus-3908 (Original work published 2025)