Montag, M. ., Zander, S. ., Wetzel, S. ., & Bertel, S. . (2017). Rotate It - Effekte touchbasierter Interaktion auf mobilen Endgeräten beim Lösen räumlicher Aufgaben im Mathematikunterricht der Sekundarstufe. MediaPsych2017 – 10th Conference of the Media Psychology Division. Landau, Germany.
Kreter, D. S., Firma>, R. H. <, & Flensburg, U. . (2017). Ungeplante Unternehmensnachfolge im Mittelstand : spezifische Problemlagen und betriebliche Bewältigungsstrategien. Augsburg : Rainer Hampp Verlag.
Heinz, M. ., Bertel, S. ., & Echtler, F. . (2017). Demonstrating TouchScope: A Hybrid Multitouch Oscilloscope Interface. In Proceedings of the 19th ACM International Conference on Multimodal Interaction (S. 501). New York, NY, USA: Association for Computing Machinery. http://doi.org/10.1145/3136755.3143026
Abstract
We present TouchScope, a hybrid multitouch interface for common off-the-shelf oscilloscopes. Oscilloscopes are a valuable tool for analyzing and debugging electronic circuits, but are also complex scientific instruments. Novices are faced with a seemingly overwhelming array of knobs and buttons, and usually require lengthy training before being able to use these devices productively. TouchScope uses a multitouch tablet in combination with an unmodified off-the-shelf oscilloscope to provide a novice-friendly hybrid interface, combining both the low entry barrier of a touch-based interface and the high degrees of freedom of a conventional button-based interface.
Boysen, C. ., Kaldemeyer, C. ., & Tuschy, I. . (2017). Druckluftspeicherkraftwerk Schleswig-Holstein - Untersuchung zur Eignung Schleswig-Holsteins als Modellstandort für die Energiewende. Forschungsergebnisse, 5.
Wortmann, S. ., Geisler, J. ., & Konigorski, U. . (2016). Lidar-Assisted Feedforward Individual Pitch Control to Compensate Wind Shear and Yawed Inflow. Journal of Physics: Conference Series, 753, 052014. http://doi.org/10.1088/1742-6596/753/5/052014 (Original work published 2025)
Abstract
Lidar-assisted individual pitch control (IPC) has been investigated occasionally in recent years, focusing on the compensation of (vertical) wind shear as the main disturbance. Since yawed inflow might cause significant load fluctuations too, it is worth to compensate. Load patterns caused by yawed inflow significantly differ from those caused by wind shear, requiring a more sophisticated control algorithm. In this paper a lidar-assisted cyclic pitch feedforward control to compensate wind shear and yawed inflow is presented. The main objective is the analysis of the load patterns through a simplified aerodynamic model, which among other things focuses on a reasonable representation of the skewed wake effect. Establishing a suitable structure of the feedforward controller follows. The paper concludes with a comparison of fatigue load reductions achieved by three different controllers. Firstly, a well-known feedback individual pitch control; secondly, a feedforward controller for pure wind shear compensation and thirdly, this new feedforward controller to compensate wind shear and yawed inflow. The last two controllers use ideal lidar measurement chains.
Lemmer, F. ., Raach, S. ., Schlipf, D. ., & Cheng, P. W. (2016). Parametric wave excitation model for floating wind turbines. In Energy Procedia (Bd. 94, S. 290–305). Trondheim, Norway. http://doi.org/10.1016/j.egypro.2016.09.186 (Original work published 2025)
Schlipf, D. ., & Raach, S. . (2016). Turbulent extreme event simulations for Lidar-assisted wind turbine control. In Journal of Physics: Conference Series (Bd. 753, S. 052011). Munich, Germany. http://doi.org/10.1088/1742-6596/753/5/052011 (Original work published 2025)
Lemmer, F. ., Schlipf, D. ., & Cheng, P. W. (2016). Control design methods for floating wind turbines for optimal disturbance rejection. In Journal of Physics: Conference Series (Bd. 753, S. 092006). Munich, Germany. http://doi.org/10.1088/1742-6596/753/9/092006 (Original work published 2025)
Kiraz, M. S., & Uzunkol, O. . (2016). Efficient and verifiable algorithms for secure outsourcing of cryptographic computations. International Journal of Information Security, 15, 519–537. http://doi.org/10.1007/s10207-015-0308-7 (Original work published 2025)