Geisler, J. (2019). Leistungsreduktion bei mehreren Windenergieanlagen in einem Windpark DE102017006452. Germany: Senvion GmbH. (Original work published Januar 2019)
Geisler, J. (2019). Bereitstellen von Regelleistung beim Betrieb einer regenerativen Stromerzeugungseinheit, insbesondere Windenergieanlage DE102017007132. Germany: Senvion GmbH. (Original work published Januar 2019)
Frey, J., Ouirynen, R., Kouzoupis, D., Frison, G., Geisler, J., Schild, A., & Diehl, M. (2019). Detecting and Exploiting Generalized Nonlinear Static Feedback Structures in DAE Systems for MPC. In 18th European Control Conference (ECC) (S. 2756–2762). http://doi.org/10.23919/ECC.2019.8795732
Luna, J., Gros, S., Geisler, J., Falkenberg, O., Noga, R., & Schild, A. (2018). Super-short Term Wind Speed Prediction based on Artificial Neural Networks for Wind Turbine Control Applications. In IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society (S. 1952–1957). http://doi.org/10.1109/IECON.2018.8591623
Geisler, J., Koestl, T., Pingel, S., Schaube, F., Schröter, T., & Seidel, M. (2017). Windpark mit schneller Reaktion auf Netzparameteränderungen und Verfahren hierfür DE102016007098. Germany: Senvion GmbH. (Original work published Dezember 2017)
Mittelmeier, N., Geisler, J., & Rautenstrauch, A. (2017). Verfahren zum Überwachen einer Windenergieanlage DE102015015596. Germany: Senvion GmbH. (Original work published Juni 2017)
Wortmann, S., Geisler, J., & Konigorski, U. (2016). Lidar-Assisted Feedforward Individual Pitch Control to Compensate Wind Shear and Yawed Inflow. Journal of Physics: Conference Series, 753, 052014. http://doi.org/10.1088/1742-6596/753/5/052014 (Original work published 2025)
Abstract
Lidar-assisted individual pitch control (IPC) has been investigated occasionally in recent years, focusing on the compensation of (vertical) wind shear as the main disturbance. Since yawed inflow might cause significant load fluctuations too, it is worth to compensate. Load patterns caused by yawed inflow significantly differ from those caused by wind shear, requiring a more sophisticated control algorithm. In this paper a lidar-assisted cyclic pitch feedforward control to compensate wind shear and yawed inflow is presented. The main objective is the analysis of the load patterns through a simplified aerodynamic model, which among other things focuses on a reasonable representation of the skewed wake effect. Establishing a suitable structure of the feedforward controller follows. The paper concludes with a comparison of fatigue load reductions achieved by three different controllers. Firstly, a well-known feedback individual pitch control; secondly, a feedforward controller for pure wind shear compensation and thirdly, this new feedforward controller to compensate wind shear and yawed inflow. The last two controllers use ideal lidar measurement chains.
Wortmann, S., Haizmann, F., Geisler, J., & Konigorski, U. (2015). Comparison of Feedback and Ideal and Realistic Lidar-Assisted Feedforward Individual Pitch Control. In Proceedings of the European Wind Energy Association (EWEA) Conference. Paris. Abgerufen von http://tubiblio.ulb.tu-darmstadt.de/78286/ (Original work published November 2015)
Geisler, J., Bluhm, R., Ott, T., & Schröter, T. (2015). Windpark mit Vorsteuerung im Leistungsregler DE102014000784. Germany: Senvion GmbH. (Original work published Juli 2015)
Schröter, T., Geisler, J., Ott, T., & Bluhm, R. (2015). Windparkregelung mit verbessertem Sollwertsprungverhalten DE102014000790. Germany: Senvion GmbH. (Original work published 2015)