Module Handbook Master "Wind Energy Engineering"

	2
lable of content	2
Module overview	
Compulsory elective modules	5
Module number [1]: Scientific and technical writing	6
Module number [2]: Global wind industry and turbine technology	7
Module number [3]: Wind Energy Planning	9
Module number [4]: Advanced engineering mathematics	
Module number [5]: Mechanical engineering basics	
Module number [6]: Electrical engineering basics	
Module number [7]: German for foreign students	
Module number [8]: English for engineers	15
Module number [9]: Energy economics	
Module number [10]: Wind turbine aerodynamics	
Module number [11]: Certification, load assumptions and simulations	
Module number [12]: Control and automation of wind power plants	
Module number [13]: Tower and rotor structures	22
Module number [14]: Mechanical drive train	
Module number [15]: Electrical engineering for wind turbines	
Module number [16]: Finite elements (FE) & fatigue analysis	
Module number [17]: Machinery components	27
Module number [18]: Electrical machines, power electronics, control	29
Module number [19]: Grid integration	30
Module number [20]: Structures – rotor blades and civil engineering	
Module number [21]: Project: development of a wind turbine	
Module number [22]: Advanced wind farm planning	35
Module number [23]: Offshore wind energy: operation and maintenance	
Module number [24]: Experimental and computational fluid dynamics	
Module number [25]: Modelling & simulation of wind turbines	40
Module number [26]: Turbine measurements	
Module number [27]: Controller design for wind turbines and wind farms	43
Module number [28]: Wind energy challenge project	44
Module number [29]: Green entrepreneurship	
Module number [30]: Wind Farm Project Development	48
Module number [31]: Master thesis	50

Module overview – Current offer

1. Semester (WiSe)	2. Semester (SuSe)		3. Se	mester (WiSe)	
1 Scientific and technical writing (Jebsen)	10 Wind turbine aerodynamics (Risius, Schlipf)	Mechanical engineering	Electrical engineering	Structural engineering	Project development
2 Global wind industry & turbine technology (Faber, Schlipf, Funk, Schubert, Funk Rave, Schneider)	11 Certification, load assumptions & simu- lations (Faber, Manjock)	17 Machinery components (Quell, Ingwersen, Kraemer)	18 Electrical machines and power electronics (Saiju)	20 Structures, rotor blades and civil engineering (Faber, Risius, Previtali)	22 Advanced wind farm planning (Nikolai, Winterfeldt)
9 Energy economics	12 Control and				
(Hartmann)	power plants (Schütt)	16 Finite elements	19 Grid integration	16 Finite elements (FE) & fatigue	30 Wind farm
4 Advanced engineering mathematics (Schlipf)	13 Tower and rotor structures (Faber, Risius, Keindorf)	(PE) & latigue analysis (N.N., Stankovic)		analysis (N.N., Stankovic)	development (Blohm)
Elective A	14 Mechanical drive train (Quell)	21 Project: Development of a wind turbine (Quell, Faber et al.)	21 Project: Development of a wind turbine (Quell, Faber et al.)	21 Project: Development of a wind turbine (Quell, Faber et al.)	21 Project: Development of a wind turbine (Quell, Faber et al.)
Elective B	15 Electrical				
	turbines (Leiße)	2 Electives	2 Electives	2 Electives	2 Electives
4. Semester (SuSe)					

Thesis (module no. 31)

Compulsory elective modules – Current offer

1. Semester (WiSe)

.....

5 Mechanical engineering basics (Weychardt)

6 Electrical engineering basics (Saiju)

7 German for foreign students (Kähler)

8 English for engineers (Reimer)

3. Semester (WiSe)

3 Wind energy planning and applied geoinformatics (Möller)

23 Offshore wind energy: operation and maintenance (Birk)

24 Experimental and computational fluid dynamics (Risius)

25 Modelling & simulation of wind turbines (Jauch)

26 Turbine measurements (Sachse)

27 Controller design for wind turbines and wind farms (Schlipf)

Module number [1]: Scientific and technical writing

Course	Master of Science – Wind Energy Engineering
Module name	Scientific and technical writing
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Dr. Simon Jebsen, University of Southern Denmark
Lecturer/s	Dr. Simon Jebsen, University of Southern Denmark
Status within the curriculum	Master Course Wind Energy Engineering mandatory course
Language	English
Type of course and hours per week	2 SH lectures, 2 SH writing laboratory
Student workload	attendance: 60 h private study: 90 h
Credit points	5 ECTS
Preconditions according to examination regulations	English language skills according to admission requirements
Use of the module in other degree programmes	No use in other degree programmes
Learning outcomes: aims of	By the end of the module, the students will be able to:
the module, acquired skills	write academic texts using technical vocabulary
	structure academic texts writing concise sentences
	define research questions
	employ paraphrase and summary
	employ quotation and a correct citation style
	gain the knowledge of drafting, revising and editing academic texts
	 identify effective writing techniques in his or her own work and in peer
	writing
	avoid plagiarism present acientific regulte in an appropriate way
Subjects covered	present scientific results in an appropriate way
Subjects covered	Formals for scientific papers and texts, especially paragraph structure
	(tonic sentence supporting example transition sentence)
	Effective introductions, summaries and paraphrase
	Effective use of quotation and various citation styles
	Writing process (pre-writing, writing, re-writing)
	 Reading and responding to assigned readings
	Giving peer-feedback to fellow writers
	Presentation of scientific results
Form of examination	Written report
Media used	Powerpoint presentation, StudIP
Recommended literature	Bailey, S. (2011). Academic Writing: A Handbook for International Students. Third Edition. London/New York: Routledge.
	• Rienecker, L., Jørgensen, P., Stray, P. & Skov, S. (2013). The Good Paper: A Handbook for Writing Papers in Higher Education. Frederiksberg: Samfundslitteratur.

Course	Master of Science – Wind Energy Engineering
Module name	Global wind industry and turbine technology
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
Lecturer/s	Matthias Schubert, wyncon
	Martin Schneider, anemos Gesellschaft für Umweltmeteorologie mbH
	Robin Funk, EMD Deutschland
	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
	Prof. h.c. Dr. Klaus Rave, Flensburg University of Applied Sciences
	Prof. DrIng. David Schlipf, Flensburg University of Applied Sciences
Status within the curriculum	master Course wind Energy Engineering
Languaga	Finalication Course
Turne of course and hours per	/ SH loctures with evergines
week	4 SH lectures what exercises
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	None
examination regulations	
Use of the module in other	Master degree programme Energy and Environmental Management,
degree programmes	Europa-Universität Flensburg.
	The module is relevant for those of the students from the sub-programme
	Energy and Environmental Management in Developing/Industrial Countries
	who want to expand existing knowledge in the field of wind energy. It is also
	of interest to a smaller number of students who, in the course of their
	studies in Energy Management, become involved with the certification,
	planning and operation of wind turbines, or who seek employment in the
	field of wind energy following their studies. The Energy and Environmental
	Management degree programme at the European University of Flensburg
	has no comparable courses of its own, so that there is good supplementary
	potential if there is interest and demand.
Learning outcomes: aims of	This course gives an overview on the global wind business and its
the module, acquired skills	major players from industry, developers, investors, operators,
	government and regulatory organisations, research communities as
	well as networks and associations.
	• Students will be introduced to the value chain of the wind business end-
	to-end from assessing a project site to operating and servicing a wind
	farm.
	They shall develop an initial understanding of the major drivers for success in the wind business
	 They will learn about the history of wind turbines and the development
	of their designs and concepts in that historic context
	This introductory overview shall help students in identifying their
	specific field(s) of interest in the broad area of wind business.
	• It shall further support them in understanding the broader context of
	the detailed knowledge that will be covered by specific lectures of the
	program.

Module number [2]: Global wind industry and turbine technology

Subjects covered	• Students will learn about the relation between different environmental
	conditions, legislation / regulatory regimes, financing aspects,
	technology concepts and their effects on the wind industry.
	• They will get an overview on the development of the global wind energy
	markets and their major players in a historical and political context.
	• The lecture covers major aspects of developing wind projects such as
	site assessment, economic forecasting, financing, planning and
	building.
	• It will cover the fundamentals of energy meteorology (wind systems,
	boundary layers, turbulence, mesoscale models) and methods for
	generating the required data for wind projects with wind atlas, software
	(WAsP) or short and long-term measurements.
	Students will understand the physical, technical and legal aspects of
	wind energy parks and will be able to calculate their energy production
	and emissions within the frame of site assessment.
	They shall be able to assess emissions and influences on the
	environment and get acquainted with methods of measuring and
	calculating noise, shadows, wake effects, optical impact according to
	IEC standards.
	Students will learn about major milestones in the history of wind
	energy utilization with a focus on modern grid-electricity generation
	since the 1980s.
	• They shall have an overview about wind turbine main characteristics
	and are able to differentiate turbine types by their technical
	architectures and concepts.
	• The lecture shall generate an understanding about major pro and cons
	of principal design solutions, thereby capturing why some principals
	have survived the design evolution (and more interestingly: why others
	failed).
Form of examination	Written examination (120 min) or oral examination
Media used	black board, power point presentation,
Recommended literature	Manwell, J. F., McGowan, J. G., Rogers, A. L.: Wind Energy Explained.
	Wiley, Chichester, 2009
	• Troen, I. and E. L. Petersen: European Wind Atlas. Risø National
	Laboratory, Roskilde, 1989
	CEwind, Hrsg.: Einführung in die Windenergietechnik. Carl Hanser
	Verlag, München, 2012
	• CEwind, ed.: Understanding Wind Energy Technology. Wiley, 2014 i.p.
	IEC 61400 International Electrotechnical Commission
	Technische Richtlinien (FGW-Richtlinien)
	Manuals programs WindPRO and Windfarmer
	Gasch R. und Twele, J. (Hrsg.): Windkraftanlagen (9. Aufl.). Springer
	Vieweg, 2016
	Hau, E.: Windkraftanlagen (7. Aufl.). Springer Vieweg, 2017

Module number [3]: Wind energy planning and applied geoinformatics

Course	Master of Science – Wind Energy Engineering
Module name	Wind energy planning and applied geoinformatics
Abbreviation (if applicable)	WEPAG
Subtitle (if applicable)	
Seminar (if applicable)	Wind farm planning and geospatial methods
Semester	Winter semester
Person in charge of module	Prof. Dr. Bernd Möller, Europa-Universität Flensburg
Lecturer/s	Prof. Dr. Bernd Möller, Europa-Universität Flensburg
Status within the curriculum	Master Course Wind Energy Engineering
	Compulsory elective course
Language	English
Type of course and hours per	4 SH lectures
week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
Les of the module in other	Elective course in the Master Sustainable Energy at the Europe Universität
dograo programmos	Elective course in the Master Sustainable Energy at the Europa-Oniversitat
Learning outcomes: aims of	Acquisition of knowledge about levels of onshore and offshore wind
the module acquired skills	energy nlanning
the module, dequired skins	 Gaining knowledge on location-specific aspects of wind energy
	suitability infrastructural planning approval planning and site
	management
	The students gain practical skills of using geographical information
	systems for wind energy planning and project management.
	The students learn about how location relates to political, social.
	technical and legal aspects of wind energy planning and management.
	• Students can assess suitability of regions and locations for wind energy
	projects.
Subjects covered	Wind energy planning procedures and policy review
	• Introduction to the use of GIS software for engineers and planners
	Geographical assessment of wind energy potentials
	Acquisition and application of geospatial data and information
	Identification of suitable areas and preliminary location analysis
	Spatial modelling of environmental aspects of wind energy
	Regional mapping of preferential sites
	National suitability mapping
	Marine spatial planning for offshore wind energy
Form of examination	Lab exercise portfolio (~15 pages)
Media used	White board, power point presentation, beamer, Lab with QGIS and relevant
	geodata.
Recommended literature	De Smith, Longley and Goodchild: Geospatial Analysis – A
	Comprehensive Guide. Available online:
	<u>nttp://spatialanalysisonline.com/</u>
	GIS IOF KENEWADIE ENERGY. GIS Best Practices series, ESRI 2010.
	Suntak, HOIEF, Stadique, Madiener, De Doncker: A GIS-based Decision
	Support System for the Optimal String of Wind Farm Projects. E.UN
	Colorida coiontific nonoro modo available hu the lecturer
	• Selected scientific papers made available by the lecturer.

Course	Master of Science – Wind Energy Engineering
Module name	Advanced engineering mathematics
Abbreviation (if applicable)	AdvMath
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. DrIng. David Schlipf, Flensburg University of Applied Sciences
Lecturer/s	Prof. DrIng. David Schlipf, Flensburg University of Applied Sciences
Status within the curriculum	Master Course Wind Energy Engineering
	mandatory course
Language	English
Type of course and hours per week	4 SH lectures
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to examination regulations	Sound Knowledge of undergraduate Mathematic
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	The students will be introduced into the classical methods of
the module, acquired skills	advanced engineering calculus.
	• Besides learning classical methods of advanced engineering calculus
	the students will also be able to apply the methods to wind energy
	applications
Subjects covered	Ordinary Differential Equations (ODEs)
	Linear Algebra. Vector Calculus Equation Amplication Differential Equations (DDEs)
	Fourier Analysis. Partial Differential Equations (PDES)
	Numoric Analysis
	Ontimization Granks
	Probability Statistics
Form of examination	Written examination (120 min) or oral examination
Media used	black board
Recommended literature	E. Krevszig, Advanced Engineering Mathematics, 10th Ed. I. Wiley and
· · · · · · · · · · · · · · · · · · ·	Sons, 2011, ISBN 978-0-470-64613-7

Module number [4]: Advanced engineering mathematics

Course	Master of Science – Wind Energy Engineering
Modulo namo	Machanical anginoaring basics
Abbroviation (if applicable)	
Subtitle (if applicable)	
Subtitle (il applicable)	
	Winter competer
	Willer Sellesler
Person in charge of module	Prof. DrIng. J.H. Weychardt, University of applied Sciences Kiel
Lecturer/s	Prof. DrIng. J.H. Weychardt, University of applied Sciences Kiel
Status within the curriculum	Master Course Wind Energy Engineering
	Compulsory elective course
Language	English
Type of course and hours per week	4 SH lectures with practical exercises
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Bachelor degree in an engineering discipline or in physics;
examination regulations	NOT for students with bachelor degree in mechanical or civil engineering
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	This course provides a bridging opportunity for students who have
the module, acquired skills	completed a Bachelor of Science (Electrical/Electro technical
	Engineering).
	• Goal: To prepare students to utilize FEM-based computational tools.
	• First, the students are introduced to basic mechanics concepts:
	applied loads (forces, bending moments and torques), the resulting
	internal loads and the generation of stresses. Point loads, uniformly
	distributed loads and parabolic load distributions will be analyzed.
	• This forms the foundation for the development of simple models,
	which can be analyzed using FEA techniques e.g. beams in bending
	must have at least 3 layers of elements: the neutral layer, one in
	tension, one in compression.
	• In this manner, students are prepared for laboratory experiments
	with FEM software in the computer lab.
	1
Subjects covered	Introduction: The finite element method, types of finite elements and
	what they can calculate a motivation of what the students have to
	learn
	 Axioms, principles and sign conventions in mechanics.
	Statics: Resolution of forces, static equilibrium systems, calculation of
	support reactions.
	Mechanics of Materials: Mechanical stress. Hooke's law, normal and
	shear stresses, axial loads and torsion.
	Strength calculation: The voltage analogue: comparison of voltage
	manipulation with the determination of stresses due to
	tension/compression bending and torsion of prismatic straight bars
	Kinematics and Kinetics of (a) point masses and (b) rigid bodies in
	pure rotation
	Beam model concentrated and distributed loads shear force
	bending moment and torque curves
	Application to the modelling of FFM systems
	- Application to the modeling of the systems.
Form of examination	Written examination (120 min) or oral examination
Modia usod	Whiteheard PC and video projector a learning platform in class
Media used	avantice outrained and video projector, e-realiting platform, in-Class
	experiments, numerical sinulations, lecture notes, utilied exercises

Module number [5]: Mechanical engineering basics

Recommended literature	•	Beer, F., Johnston, E.R., deWolf, J., Mazurek, D: Mechanics of Materials. McGraw Hill, 6th edition, 2011
	•	Gere, J.M., Goodno, B.J.: Mechanics of Materials, CEngage Learning, 8th edition, 2012
	•	Popov, E.: Engineering Mechanics of Solids.", Prentice Hall, 2nd edition, 1998
	•	Buchanan, G.: Mechanics of Materials. HRW.

Course	Master of Science – Wind Energy Engineering
Module name	Electrical engineering basics
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. DrIng. Rajesh Saiju, Flensburg University of Applied Sciences
Lecturer/s	Prof. DrIng. Rajesh Saiju, Flensburg University of Applied Sciences
Status within the curriculum	Master Course Wind Energy Engineering
	Compulsory elective course
Language	English
Type of course and hours per week	4 SH lectures
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Bachelor degree in an engineering discipline or in physics;
examination regulations	NOT for students with bachelor degree in electrical engineering.
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	The course allows the students to understand the basics of electrical
the module, acquired skills	engineering
	 I hey are able to apply the learned basics to observed electrical phenomena
Subjects covered	Basic quantities and basic laws
	• DC circuit: current in resistor, current in inductor, voltage at capacitor
	AC circuits: calculation of steady states in AC circuits using complex
	number calculation
	• 3-phase AC
	Electric and magnetic field
Form of examination	Written examination (120 min) or oral examination
Media used	black board, power point presentation,
Recommended literature	Ose, R., Elektrotechnik für Ingenieure, Fachbuchverlag Leipzig
	Zastrow, D.; Elektrotechnik, Vieweg, Braunschweig
	Weisgerber, W.; Elektrotechnik für Ingenieure Bd. 1 + 2, Vieweg,
	Braunschweig
	Gussow, M.; Basic Electricity, McGrawHill

Module number [6]: Electrical engineering basics

Course	Master of Colonge Wind Engraver Engineering
Course Madula name	Master of Science – who Energy Engineering
Module name	German for foreign students
Abbreviation (if applicable)	
Subtitle (if applicable)	Basic knowledge of German language
Seminar (if applicable)	German for foreign students
Semester	Winter semester
Person in charge of module	Sybille Kähler, Flensburg University of Applied Sciences
Lecturer/s	Sybille Kähler, Flensburg University of Applied Sciences
Status within the curriculum	Master Course Wind Energy Engineering
	Compulsory elective course
Language	German
Type of course and hours per week	4 SH lectures
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	• basic language skills corresponding to A1 (breakthrough or beginner) or
the module, acquired skills	A2 (waystage or elementary) of the Common European Framework of
	Reference for Languages (CEF) depending on the students'
	preknowledge
Subjects covered	A1: after completion of this course students can
	- understand and use familiar everyday expressions and very
	basic phrases related to particular concrete situations
	- introduce themselves and others
	- ask and answer questions about personal details
	- interact in a simple way
	• A2: after completion of this course students can:
	- understand and use sentences and frequently used
	expressions related to areas of most immediate relevance
	- communicate in simple and routine tasks
	- exchange information on familiar and routine matters
	- describe in simple terms aspects of their background,
	immediate environment and matters in areas of immediate
	need
Form of examination	Oral or written examination (90 min.)
Media used	white board, beamer, hand-outs
Recommended literature	Iin, F., Voß, IL: Deutsch als Fremdsprache, Grammatik aktiv A1-B1
	Üben Hören Sprechen Cornelsen Verlag Hamburg
	•

Module number [7]: German for foreign students

Course	Master of Science – Wind Energy Engineering
Module name	English for engineers
Abbreviation (if applicable)	ENGL
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Dr. Margret Reimer, Flensburg University of Applied Sciences
Lecturer/s	Dr. Margret Reimer, Flensburg University of Applied Sciences
Status within the curriculum	Master Course Wind Energy Engineering
	Compulsory elective course
Language	English
Type of course and hours per week	4 SH lectures
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	Students will become conversant with the general and specialized
the module, acquired skills	language foundations for the formulation of scientific and technical
	discourse.
	Students will become aware in particular of collocations and linguistic
	conventions that can be problematic for German speakers and will
	familiarise themselves with verb-noun and adjective-noun
	combinations used in technical communication
Subjects covered	Controlled formulating
	Exercises for easy and accurate conversion of facts into language.
	Basic technical terms and their linguistic description in definitions:
	circuit, conductance, conductivity, efficiency, machine, magnitude,
	Testistance, resistor, power, quantity, speed, switch, velocity,)
	recrimical communication: complaints, damage reports, technical
	Treatment of colocted topics: disturbance and errors: velocity:
	 Treatment of selected topics, disturbance and enors, velocity, modernization; naming and defining, building, design and construction;
	the environment: quality
Form of examination	Written Examination (120 min) or oral examination
Media used	black board, power point presentation, internet
Recommended literature	Bonamy, D.: Technical English 3. Pearson Longman, 2011
	ISBN: 978-1-4082-2947-7
	Ibbotson M.: Professional English in Use. Engineering. Technical English for
	Professionals. Cambridge University Press, 2009.
	ISBN: 978-0-521-73488-2
	Murphy, R.: English Grammar in Use. 3 rd Edition. Cambridge University
	Press, 2010
	ISBN: 978-0-521-53289-1
	University of Oxford Style Guide
	WWW.OX.aC.UK
	How to give good presentation
	HULUIS/2013/00 HOW-IO-give-a Killer precentation

Module number [8]: English for engineers

Course	Master of Science – Wind Energy Engineering
Module name	Energy economics
Abbreviation (if applicable)	EE
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. Dr. Claus Hartmann, Flensburg University of Applied Sciences
Lecturer/s	Prof. Dr. Claus Hartmann, Flensburg University of Applied Sciences
Status within the curriculum	Master Course Wind Energy Engineering
	mandatory course
Language	English
Type of course and hours per	4 SH lectures
week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Admission to the M. Sc. Wind Energy Engineering
examination regulations	
Use of the module in other	Mandatory course in the Bachelor Energiewissenschaften (Schwerpunkt
degree programmes	Energie- und Umweltmanagement) at the Flensburg University of Applied
	Sciences
Learning outcomes: aims of	• Students are introduced to the fundamental problems and the overall
the module, acquired skills	contexts of the economics of energy.
	• Students will learn about the different parts of energy demand and
	the different ways of energy supply.
	• An understanding of the limitations of non-renewable energy sources
	and the difficulties of their substitution by renewable and often
	intermittent energy sources is taught.
	• The differences in the markets for grid-bound fuels are taught.
	• At the end of the seminar, each student is able to understand the
	basic relationships of the various energy markets and classify the
	contribution of different energy sources, fuels and technologies in the
	context of the total energy system and sustainable development.
Subjects covered	Why is energy a subject of economics?
	Energy as a resource;
	 Energy consumption and sustainable development;
	 Energy and the environment; Social costs of energy;
	 General aspects of energy markets; Prices in energy markets;
	• The coal market; The crude oil market; The natural gas market; The
	electricity market; The market for district heating;
	Energy demand by sector; Industry, Households, Commercial sector,
	Transport,
	Potentials, costs and limits of renewable energy sources,
	Solar energy for electricity, Solar energy for low temperature heat,
	Wind energy, Energy from biomass, Hydropower, Geothermal
	energy, Wave and tidal energy,
	• Potentials, costs and limits of the rational use of energy by sector,
	Industry, Households, Commercial Sector, Transport,
	Scenarios of sustainable long term energy systems
Form of examination	Presentation of the different teams and a final written report by each
	team
Media used	Group work and lectures with projector based presentations
Recommended literature	Energy Institute (see most recent year): Statistical Review of World
	Energy. Internet

Module number [9]: Energy economics

•	IPCC, 2023: Summary for Policymakers. In: Climate Change 2023:
	Synthesis Report. Contribution of Working Groups I, II and III to the
	Sixth Assessment Report of the Intergovernmental Panel on Climate
	Change
•	Christian von Hirschhausen, Clemens Gerbaulet, Claudia Kemfert,
	Casimir Lorenz, Pao-Yu Oei: Energiewende "Made in Germany",
	Springer Verlag.

Course	Master of Science – Wind Energy Engineering
Module name	Wind turbine aerodynamics
Abbreviation (if applicable)	Intro WT Aero
Subtitle (if applicable)	Basic knowledge of wind turbine aerodynamics
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. Dr. Steffen Risius, University of Applied Sciences Kiel
Lecturer/s	Prof. Dr. Steffen Risius, University of applied Sciences Kiel
	Prof. DrIng. David Schlipf, Flensburg University of Applied Sciences
Status within the curriculum	Master course Wind Energy Engineering
	mandatory course
Language	English
Type of course and hours per	4 SH lectures
week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Sound knowledge of undergraduate Mathematics
examination regulations	
Use of the module in other	Master degree programme Energy and Environmental Management,
degree programmes	Europa-Universität Flensburg.
	The module is relevant for those of the students from the sub-programme
	Energy and Environmental Management in Developing/Industrial Countries
	who want to expand existing knowledge in the field of wind energy. It is also
	of interest to a smaller number of students who in the source of their
	studies in Energy Management, become involved with the certification,
	planning and operation of wind turbines, or who seek employment in the
	field of wind energy following their studies. The Energy and Environmental
	Management degree programme at the European University of Flensburg
	has no comparable courses of its own, so that there is good supplementary
	potential if there is interest and demand.
Learning outcomes: aims of	Introduction into the classical methods of low-speed aerodynamics and
the module, acquired skills	blade-element and momentum (BEM) theory, its use and application
Subjects covered	Basics of atmospheric flow and the atmospheric boundary layer
5	Basic concepts of fluid dynamics and its governing equations
	Stream lines, potential theory, Navier-Stokes and the influence of
	friction
	Boundary Layers, aerodynamic lift and turbulence
	Simple momentum-theory of wind-turbine and the Betz limit
	General momentum theory and vortex-theory of wind-turbine
	The Blade Element Momentum (BEM) theory
Form of examination	Written Examination (120 min) or oral examination
Media used	black board, power point presentation, internet
Recommended literature	• A. P. Schaffarczyk, Introduction to Wind Turbine Aerodynamics, 2. ed.,
	Springer 2020
	• White FM. Fluid Mechanics 5. ed., International ed. McGraw-Hill 2003

Module number [10]: Wind turbine aerodynamics

	-
Course	Master of Science – Wind Energy Engineering
Module name	Certification, load assumptions and simulations
Abbreviation (if applicable)	CERT
Subtitle (if applicable)	Basic knowledge about loads, certification, standards and guidelines of
	wind turbines
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
Lecturer/s	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
	Andreas Manjock, DNV
Status within the surriculum	Master Course Wind Energy Engineering
Status within the curriculum	mandatory course
Languago	English
Type of course and hours per	2 SH loctures
week	2 SH evercises
Student workload	attendance: 60 h
Student workload	nrivate study: 90 h
Credit points	5 FCTS
Preconditions according to	General knowledge in undergraduate mechanics general ability to use
examination regulations	computers basic experience in the use of engineering software
Use of the module in other	Master degree programme Energy and Environmental Management
degree programmes	Europa-Universität Flensburg
active brogrammer	
	The module is relevant for those of the students from the sub-programme
	Energy and Environmental Management in Developing/Industrial Countries
	who want to expand existing knowledge in the field of wind energy. It is also
	of interport to a smaller number of students who in the source of their
	of interest to a smaller number of students who, in the course of their
	studies in Energy Management, become involved with the certification,
	planning and operation of wind turbines, or who seek employment in the
	field of wind energy following their studies. The Energy and Environmental
	Management degree programme at the European University of Flensburg
	has no comparable courses of its own, so that there is good supplementary
	potential if there is interest and demand.
Learning outcomes: aims of	Knowledge and understanding of general items about loads, standards
the module, acquired skills	and guidelines, type and project certification
	• Possibility to connect this knowledge about loads and certification with
	practical background of the person who is teaching this course
	Introduction to load simulation for wind turbines.
	• The students will understand and learn about the design processes of
	wind turbines. They will be able to understand the importance of
	dynamic load simulations for wind turbines and can calculate different
	load cases.
Subjects covered	General Items
	Extreme and fatigue load calculations
	Standards and Guidelines
	• Type Certification:
	• Numbering systems
	Certification Report Statement of Compliance
	o Statement of Compliance
	Design Assessment
	- Design Assessment

Module number [11]: Certification, load assumptions and simulations

	- IPE
	- Prototype Testing
	Project Certification:
	o Site Assessment
	 Site Specific Design Assessment
	 Manufacturing Surveillance
	 Surveillance of Transport, Installation and Commissioning
	Physics and Aerodynamic Principles
	Guidelines and Standards
	Wind Turbine Design Process
	 Load Case Definitions
	o Turbine Design
	 Load case simulation
	• Extreme Loads (for Example DLC 1.3)
	o Fatigue Loads
Form of examination	Written Examination (120 min) or oral examination
Media used	black board, power point presentation, projector, PC
Recommended literature	 Understanding Wind Energy Technology, Wiley, 2021 (expected)
	 Hau, E.: Windkraftanlagen. Springer Verlag, Berlin, 2008
	 Manwell, J.F. et.al.: Wind Energy Explained. Wiley Ltd, Chichester, 2009
	 Heier, S.: Windkraftanlagen im Netzbetrieb, Vieweg u. Teubner Verlag,
	Wiesbaden, 2009
	 Gasch, R., Twele, J.: Windkraftanlagen. Vieweg u. Teubner Verlag, Wiesbaden, 2010
	• CEwind eG, Alois Schaffarczyk: Einführung in die Windenergietechnik,
	Carl Hanser Verlag, München, 2012
	Guideline for the Certification of Wind Turbines On- and Offshore
	DIBt Regulations
	 Germanischer Lloyd, Guideline for the Certification of Wind Turbines,
	Edition 2003/2004
	 Germanischer Lloyd, Guideline for the Certification of Wind Turbines,
	Edition 2010
	• IEC 61400-1:1999 (Edition 2)
	• IEC 61400-1:2005 (Edition 3) + Amendement 2010
	DIN EN 61400-1:2006 / DS EN 61400-1:2006 (Denmark)
	 DIBt. German Typenprutung TAPS2000 (India)

Course	Master of Science – Wind Energy Engineering
Module name	Control and automation of wind power plants
Abbreviation (if applicable)	CSAWPP
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. DrIng. Reiner Schütt, University of Applied Sciences Westküste
Lecturer/s	Prof. DrIng. Reiner Schütt, University of Applied Sciences Westküste
Status within the curriculum	Master Course Wind Energy Engineering
	mandatory course
Language	English
Type of course and hours per	4 SH lectures, exercises, project work
week	· ································
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	general knowledge of undergraduate mathematics, general knowledge of
examination regulations	automation and control, general knowledge of electrical drives and power
	electronics, admission to the M. Sc. in Wind Energy Engineering
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	The students know and understand the control systems for nitch.
the module, acquired skills	azimuth speed and power adjustment the automation as well as the
ale module, acquirea simo	possibilities of process control remote control and maintenance systems
	 They can layout and optimize the subsystems. They can judge, which can
	be fulfilled tasks in which automation level and with which
	characteristics
Subjects covered	Introduction: defining control systems and automation basics in wind
	energy conversion systems, their definition and standards
	 Feedback control systems: objectives and strategies, system description.
	application to motion control systems
	 Feedback control in wind energy conversion systems: overview.
	generator systems, vaw-, pitch-, rotor-power- and speed-control, dc-
	voltage-control and electrical power control
	 Process management: open loop control, operating states, supervisory
	control, grid integration management, communication systems
	• Summarv
Form of examination	Oral or written examination (120 min)
Media used	Blackboard, overhead, beamer, internet
Recommended literature	Heier, Siegfried: Grid Integration of WECS, John Wiley & Sons, 2008
	Hau, Erich: Wind Turbines, Springer Verlag, 2006
	 Gasch, Robert: Wind Power Plants, Springer Verlag, 2006 2008
	 CEwind: Understanding Wind Power Technology, John Wiley & Sons.
	2014
	Garcia-Sanz, Mario: Wind Energy Systems Control Engineering Design.
	Taylor & Francis, 2012
	Schütt, Reiner: Control Systems and Automation of Wind Power Plants.
	lecture notes, 2013
	Leonhard, Werner: Control of Electr. Drives, Springer Verlag, 2001

Module number [12]: Control and automation of wind power plants

Course	Master of Science – Wind Energy Engineering
Module name	Tower and rotor structures
Abbreviation (if applicable)	ToRo
Subtitle (if applicable)	Basic knowledge about towers and rotor blades of wind turbines
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
Lecturer/s	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
	Prof. Dr. Steffen Risius, University of Applied Sciences Kiel
	Prof. DrIng. Christian Keindorf, University of Applied Sciences Kiel
Status within the curriculum	Master Course Wind Energy Engineering
	mandatory course
Language	English
Type of course and hours per	2 SH lectures,
Week	2 SH exercises
Student workload	attendance: 60 h
Cradit painta	
Dreconditions according to	
examination regulations	lione
Use of the module in other	Master degree programme Energy and Environmental Management
degree programmes	Furona-Universität Flenshurg
	The module is relevant for those of the students from the sub-programme
	Energy and Environmental Management in Developing/Industrial Countries
	who want to expand existing knowledge in the field of wind energy. It is also
	of interact to a smaller number of students who in the source of their
	studies in Energy Management, become involved with the certification,
	planning and operation of wind turbines, or who seek employment in the
	field of wind energy following their studies. The Energy and Environmental
	Management degree programme at the European University of Flensburg
	has no comparable courses of its own, so that there is good supplementary
	potential if there is interest and demand.
Learning outcomes: aims of	Knowledge and understanding of general items about structures of
the module, acquired skills	towers and rotorblades
	Possibility to connect this knowledge about loads and certification with
	practical background of the person who is teaching this course
Subjects covered	General items
	Relevant standards & materials used
	I ower and rotor types
	Safety Concept and design calculation
	Modal Analysis
Form of examination	Written examination (120 min) or oral examination
Media used	black hoard nower point presentation beamer
Recommended literature	Inderstanding Wind Energy Technology Wiley 2021 (expected)
	Hau, E.: Windkraftanlagen, Springer Verlag, Berlin, 2008
	CEwind eG. Alois Schaffarczyk: Einführung in die Windenergietechnik
	Carl Hanser Verlag, München, 2012
	Guideline for the Certification of Wind Turbines On- and Offshore
	DIBt Regulations

Module number [13]: Tower and rotor structures

•	Germanischer Lloyd, Guideline for the Certification of Wind Turbines,
•	Germanischer Lloyd, Guideline for the Certification of Wind Turbines,
	Edition 2010
•	IEC 61400-1:1999 (Edition 2)
•	IEC 61400-1:2005 (Edition 3) + Amendement 2010
•	DIN EN 61400-1:2006 / DS EN 61400-1:2006 (Denmark)
•	DIBt, German Typenprüfung TAPS2000 (India)

Course	Master of Science – Wind Energy Engineering
Module name	Mechanical drive train
Abbreviation (if applicable)	MDT
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. DiplIng. Peter Quell, University of Applied Sciences Kiel
Lecturer/s	Prof. DiplIng. Peter Quell, University of Applied Sciences Kiel
Status within the curriculum	Master Course Wind Energy Engineering
	mandatory course
Language	English
Type of course and hours per week	4 SH lectures / exercises
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	The students have a profound knowledge of the general set-up, tasks and
the module, acquired skills	functionalities of wind turbine drive trains and their components.
	They do understand the technological and economical aspects of
	different solutions and are able to select preferred technical concepts for
	given conditions and demands.
	I he students are able to describe the operational und environmental
	conditions and their impact on the wind turbine drive trains.
	I hey know the methods and processes of calculating and designing the
	main components and to integrate them in the drive train system.
	I he students do understand the operation and maintenance
	requirements and the applied processes to achieve a successful and
	economical encient operation throughout the whole life cycle.
	In parallel they know now to analyze and solve specific tasks and accignments given to them within a team. They know how to present
	their regulte offectively and convincingly
Subjects covered	Tealra and functionalitics of wind turbing drive traine
Subjects covered	 Tasks and functionalities of white turbine univertains Variants, technology and economics of drive trains
	Design of georboxies
	 Design of gearboxes Geared and directly driven generators
	Betar bearing solutions
	Couplings
	Brake systems
Form of examination	Assignments with presentation and written examination (90 min) or oral
I offit of examination	examination
Media used	Blackboard beamer
Recommended literature	Germanischer I lovd (GL): Guideline for the Certification of Wind
	Turbines. 2010
	EN 61400-1: Design Requirements for Wind Turbines. 2011
	Schaffarczyk, A.: Introduction to Wind Energy Technology. 2013. Wiley
	Gasch, R.: Wind Power Plants, 2011. Springer-Verlag
	Hau, E.: Wind Turbines, Springer-Verlag, 2013

Module number [14]: Mechanical drive train

Module name Electrical engineering for wind turbines
Abbreviation (if applicable) EE for WT
Subtitle (if applicable)
Seminar (if applicable)
Semester Summer semester
Person in charge of module Prof. Dr. Ingmar Leiße, Flensburg University of Applied Sciences
Lecturer/s Prof. Dr. Ingmar Leiße, Flensburg University of Applied Sciences
Status within the curriculum Master Course Wind Energy Engineering
mandatory course
Language English
Type of course and hours per 4 SH lectures
week
Student workload attendance: 60 h
private study: 90 h
Credit points 5 ECTS
Preconditions according to Bachelor degree in an electrical engineering biased discipline, or successful
examination regulations completion of Module "Electrical engineering for mechanical engineers"
Use of the module in other No use in other degree programmes
degree programmes
Learning outcomes: aims of • To have basic knowledge on steady state performance of three phase
the module, acquired skills AC mains
Getting to know the electrical components of a wind turbine power
plant and being able to calculate their performances
Understanding the electrical systems related to wind turbines
Subjects covered • Three phase AC power systems
Basic applications of electrical machines for wind turbines in steady
state mode including performance calculations: generators for wind
turbine power generation, motors for auxiliary systems and power
transformers
Introduction to power electronics used in wind turbines: rectifiers,
frequency converters and soft starters in the main power circuit and in
auxiliary equipment
Basics about pitch and yaw systems
Cables of different voltage levels and for different purposes in wind
turbines and wind parks
Switch gear components (contactors, circuit breakers, fuses, relays)
Lightning protection in wind turbines Condition monitoring
Condition monitoring Confetty issues in electric installations
Safety issues in electric installations Beading and understanding wiring diagrams
Reading and understanding winnig diagrams Written exemination (120 min) or oral exemination
Modie wood block board newer point presentation
Recommended literature Burton T et al. "Wind Enorgy Handbook" 2nd Ed. Wiloy Mai 2011
Ackermann T. "Wind Dower in Dower Systems" Wiley, Mai 2011
Schaffarczyk A: "Inderstanding Wind Power Technology: Theory
Deployment and Optimication" Wiley 2014
Stiehler M · "Wind Energy Systems for Flectric Power Generation: Green
Energy and Technology" Springer 2010
Heier. S.: "Grid Integration of Wind Energy: Onshore and Offshore
Conversion Systems". Wiley. 2014

Module number [15]: Electrical engineering for wind turbines

Course	Master of Science – Wind Energy Engineering
Module name	Finite elements (FE) & fatigue analysis
Abbreviation (if applicable)	FFA
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. DrIng. Frithjof Marten, Flensburg University of Applied Sciences
Lecturer/s	Prof. DrIng. Frithjof Marten, Flensburg University of Applied Sciences DrIng. Lidija Stanković, DNV
Status within the curriculum	Master Course Wind Energy Engineering mandatory optional course
Language	English
Type of course and hours per	2 SH lectures
week	2 SH exercises
Student workload	attendance: 60 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Use of the module in other	No use in other degree programmes
degree programmes	5 1 5
Learning outcomes: aims of	basic use of ANSYS Workbench
the module, acquired skills	performing a static linear FE Analysis
_	validation of mesh quality
	validation of stress results
	Using FKM guideline for fatigue analysis
	Performing fatigue analysis of forged steel and cast iron for wind
	turbine components
Subjects covered	linear static analysis
	influence of mesh quality at regions with high stress gradients
	comparison of FEM stress results with stresses calculated with
	analytical approach
	minimize stresses at hot spots by modifying local geometry definitions
	calculation of stress concentration factor on the basis of FEM results
	Introduction to fatigue analysis
	calculation of synthetic SN curves according FKM guideline for wind turbine rotor shaft
	• influences of size, mean stress, roughness and notches on SN curves
	• using the safety factors of FKM and DNV GL guidelines
	• analysing the damage sum according to Palmgren/Miner and safety
	margin or stress reserve factor
	• fatigue analyses of different materials like forged steel with different
	strength and nodular cast iron
Form of examination	documentation of analytical fatigue calculation and FE Analysis of main
	shaft WEC "Optimus"
Media used	black board, power point presentation, PC, beamer
Recommended literature	FKM - Analytical Strength Assessment of Components
	Lattion-6/2012, VDMA
	DIVUL-51-0501-2010-09 - Machinery for wind turbines DNU CL Hemburg

Module number [16]: Finite elements (FE) & fatigue analysis

Course	Master of Science – Wind Energy Engineering
Module name	Machinery components
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. DiplIng. Peter Quell. University of Applied Sciences Kiel
Lecturer/s	Prof. Dipl-Ing. Peter Quell, University of Applied Sciences Kiel
	Falco Ingwersen
	Boy Dario Kraemer, Siemens Gamesa Renewable Energy GmbH & Co. KG
Status within the curriculum	Master Course Wind Energy Engineering
	mandatory course
Language	English
Type of course and hours per	4 SH lectures/practice
week	i on rectareo, pracace
Student workload	attendance: 60 h
	nrivate study: 90 h
Credit points	5 FCTS
Preconditions according to	none
evamination regulations	none
Use of the module in other degree	No use in other degree programmes
programmes	no use mouler degree programmes
Learning outcomes: aims of the	• The students have a profound knowledge of the general setup tasks and
module acquired skills	functionalities of wind turbines and their sub systems with focus on
inouule, acquireu skins	o rotor hube
	 nitch systems
	o couplings
	o machina hada
	 They do understand the technological and economical aspects of different.
	solutions and are able to soloet preferred technical concepts for given
	conditions and demands
	 They know the methods and processes of calculating and designing these
	sub systems and to integrate them into the whole wind turbine
	 The students do understand the operation and maintenance
	requirements and the applied processes to achieve a successful and
	economical efficient operation throughout the whole life cycle
	 They know how to analyze and solve specific tasks and assignments
	given to them within a team. They know how to present their results
	effectively and convincingly
Subjects covered	 Tasks and functionalities of main sub systems of wind turbines:
	- Rotor hube
	 Pitch systems (hydraulically and electrically driven)
	 Couplings
	 Machine beds (casted and welded)
	• Variante technology and economics of these sub systems
	Ctatio and dynamical loads
	Methods and calculation processes
Form of examination	written examination (120 minutes) or oral examination
Media used	black board, power point presentation, PC, beamer
Recommended literature	Schattarczyk (Ed.) Understanding Wind Power Technology: Theory,
	Deployment and Optimization, Wiley, 2014
	Hau, Erich: Wind Turbines, Springer, 2013

Module number [17]: Machinery components

Last updated_July 2024

•	Germanischer Lloyd: Wind Turbines, 2003
•	Germanischer Lloyd: Regulations for the Certification of Wind Energy
	Conversion Systems. Germanischer Lloyd, 1999
•	IEC 61400-1: Wind Turbine Generator Systems, 2019
•	Nisbett, K.; Budynas, R.: Shigley's Mechanical Engineering, 2019, McGraw-
	Hill Education Roark: Formulas of Stress and Strain, 1975
•	Szilard: Theory and Analysis of Plates, 1978
•	International Organization for Standardization: ISO 6336 - Calculation of
	load capacity of spur and helical gears 2019
•	Deutsches Institut für Normung e.V.: DIN 3990-1 - Calculation of load
	capacity of cylindrical gears; introduction and general influence factors,
	1987

Course	Master of Science – Wind Energy Engineering
Module name	Electrical machines, power electronics, control
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. DrIng. Rajesh Saiju, Flensburg University of Applied Sciences
Lecturer/s	Prof. DrIng. Rajesh Saiju, Flensburg University of Applied Sciences
Status within the curriculum	Master course Wind Energy Engineering
	mandatory-optional course
Language	English
Type of course and hours per	4 SH lectures
week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Basic knowledge in electrical engineering, especially electrical power
examination regulations	engineering
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	• To have basic knowledge on dynamic state performance of electrical
the module, acquired skills	machines: induction generators, synchronous generators
	Basic analysis and application of power electronic converters for AC
	machines as used in wind power stations and be able to calculate their
	performance.
	• To have basic knowledge on different control strategies used in wind
	turbines
Subjects covered	Induction generators
	Synchronous generators
	Power electronic converters for AC machines
	Different electrical control structures of wind turbines
Form of examination	Written examination (120 min) or oral examination
Media used	Black board, power point presentation, beamer
Recommended literature	• Schaffarczyk, J (Editor).: Understanding Wind Power Technology –
	Theory, Deployment and Optimization, Wiley, 2012
	Heier, S.: Grid Integration of Wind Energy – Onshore and Offshore
	Conversion Systems, 3 rd Edition, Wiley, 2014
	Heier, S.: Windkraftanlagen: Systemauslegung, Netzintegration und
	Regelung, Teubner + Vieweg Verlag, 2009
	• Stiebler, M.: Green Energy and Technology: Wind Energy Systems for
	Electric Power Generation, Springer, 2012
	• Kundur, P.: Power System Stability and Control, McGraw-Hill, 1994
	Wood, A. J. and Wollenberg, B. F.: Power Generation, Operation and
	Control, 2 nd Edition, Wiley and Sons, 19196

Module number [18]: Electrical machines, power electronics, control

Course	Master of Science – Wind Energy Engineering,
Module name	Grid integration
Abbreviation (if applicable)	GI
Subtitle (if applicable)	Mutual effects between wind turbines and power systems
Seminar (if applicable)	seminar
Semester	Winter semester
Person in charge of module	Prof. Dr. Clemens Jauch, Elensburg University of Applied Sciences
Lecturer/s	Prof. Dr. Clemens Jauch, Flensburg University of Applied Sciences
Lecturer/3	Marc Nottrott, Moeller Operating Engineering GmbH
Status within the curriculum	Master Course Wind Energy Engineering
	mandatory-optional course
Language	English
Type of course and hours per	4 SH lectures supplemented by exercises
week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Use of the module in other	Master degree programme Energy and Environmental Management, Europa-
degree programmes	Universität Flensburg.
5 1 5	
	The module is relevant for those of the students from the sub-programme
	Energy and Environmental Management in Developing/Industrial Countries
	who want to expand existing knowledge in the field of wind energy. It is also
	of interest to a smaller number of students who in the source of their studies
	of interest to a smaller number of students who, in the course of their studies
	in Energy Management, become involved with the certification, planning
	and operation of wind turbines, or who seek employment in the field of wind
	energy following their studies. The Energy and Environmental Management
	degree programme at the European University of Flensburg has no
	comparable courses of its own, so that there is good supplementary potential
	if there is interest and domand
Learning outcomes: aims of	 understanding the fundamental principles of power systems
the module acquired skills	 understanding the behaviour of grid connected wind turbines
the module, acquired skins	 understanding the effects grid connected wind turbines
	evetome
	 understanding the effects transient and dynamic events in power
	systems have on wind turbines
Subjects covered	nower system basics
ousjeeto covereu	 basic characteristics and quantities
	 3-phase systems
	 equivalent circuits of nower system components
	 dynamic and transient events in power systems
	o nower system stability
	power system simulation
	wind farms in power systems
	 interactions between wind turbines and nower systems
	 long term effects
	o feed-in management
	\circ fast frequency response
	\circ flicker
1	

Module number [19]: Grid integration

	 low voltage ride through and other transient events
	•
Form of examination	Written examination (120 minutes) or oral examination
Media used	projector based presentation, blackboard
Recommended literature	B.M. Weedy, B.J. Cory; Electric Power Systems; John Wiley
	S. Heier; Grid Integration of Wind Energy Conversion Systems; John
	Wiley & Sons

Course	Master of Science – Wind Energy Engineering
Module name	Structures – rotor blades and civil engineering
Abbreviation (if applicable)	
Subtitle (if applicable)	In-depth knowledge about tower design and dimensioning
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
Lecturer/s	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
	Prof. Dr. Steffen Risius, University of Applied Sciences Kiel
	Francesco Previtali, Siemens Gamesa
Status within the curriculum	Master Course Wind Energy Engineering
	mandatory-optional course
Language	English
Type of course and hours per	2 SH lectures,
week	2 SH exercises
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Certification and load assumptions
examination regulations	Tower and rotor structures
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	Students
the module, acquired skills	• know to design, dimension and optimise the (sub-)structures of a wind
	turbine and tower in consideration of structural safety, serviceability
	and economic efficiency
	• know what materials can be used (steel, reinforced concrete, GRP, wood
	etc.)
	can evaluate what materials are applicable under specific conditions
Subjects covered	Design Calculation
	Verification against Material Failure
	Verification against Stability Failure
	Verification against Fatigue Failure
	Verification of Serviceability
	Detail Calculation
	FEM Calculation
	Prevention of Resonance
	Internal resistance –
	Dimensioning of concrete and reinforcement steel
	External resistance –
	Assessment of soil, respective interaction between soil and foundation
	Dynamic benaviour – Malidation of mature fragmentation which were accounted within load
	validation of natural frequencies which were assumed within load
Form of overningtion	Calculation
	black board neuror point presentation becamer and EEM Lab
Pacammandad literatura	Suidaling for the Cartification of Wind Turbings On, and Offshare
	Guideline for the Certification of Willd Furbilities Oil- and OilShore DIPt Populations
	Civil Engineering Eurocode Standarde
	Civil Engineering DIN-Standarde
	Furocodes for civil engineering
	 Linderstanding Wind Energy Technology Wiley 201/
1	- Onacionania wina inergy recunitionegy, winey, 2014

Module number [20]: Structures – rotor blades and civil engineering

Course	Master of Science – Wind Energy Engineering
Module name	Project: development of a wind turbine
Abbreviation (if applicable)	P_WT
Subtitle (if applicable)	Focus:
	A Mechanical engineering
	B Electrical engineering
	C Structural engineering
	D Project development
Seminar (if applicable)	Project
Semester	Winter semester
Person in charge of module	Prof. DiplIng. Peter Quell, University of Applied Sciences Kiel
	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
Lecturer/s	DiplIng. Andreas Manjock, DNV-GL
	Prof. DiplIng. Peter Quell, University of Applied Sciences Kiel
	Prof. DrIng. David Schlipf. Flensburg University of Applied Sciences
	 Prof. Dr. Ing Stoffon Picius, University of Applied Science Kiel
	Prof. Dr. Ing. Beisch Caiju. Elensburg University of Applied Sciences
	Prof. DrIng. Rajesh Saiju, Hensburg Oniversity of Applied Sciences
	Prof. DrIng. Torsten Faber, Flensburg University of Applied Sciences
Status within the curriculum	Master Course wind Energy Engineering
Longuaga	Faction
Turne of course and hours per	2 CU project discussion
Type of course and nours per	1 SH colf-dependent project work
Student workload	attendance: 105 h
Student workload	nrivate study: 195 h
Credit points	10 FCTS
Preconditions according to	none
examination regulations	
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of the	The students gain deep insight into complex R&D projects.
module, acquired skills	They know about required processes and methods in project
	management and do understand the importance of interface
	management
	• The students are able to identify the components needed to build a wind
	turbine under consideration of varying site conditions
	• They know how to dimension, calculate and design relevant mechanical,
	constructional or electrical components of a wind turbine and related
	controller systems (relating to the team focus)
	Ine students know now to work and communicate efficiently in
	interdisciplinary team and are able to present their results convincingly
Subjects covered	Project planning and project management
Subjects covered	 Interdisciplinary project team work interacting between mechanics
	team electrics team and structures team
	A • Conception of the mechanical drive train
	Designing the rotor bearing, gearbox, couplings and brakes
	Aerodynamical and structural design of the rotor blades
	B Conception of the electrical system
	Dimensioning transformer, generator, converter and cable
	system for the wind turbine
	Conception of the control system

Module number [21]: Project: development of a wind turbine

	C • Load simulation and calculation
	Conception of the tower and foundation
	Designing and dimensioning tower and foundation
Form of examination	Presentation and project report
Media used	-
Recommended literature	 Schaffarczyk, Alois: Understanding Wind Power Technology, Wiley, 2014, ISBN: 978-1118647516 Hau, Erich: Wind Turbines, Springer, 2013, ISBN: 978-3642271502 S. Heier; Grid Integration of Wind Energy Conversion Systems; John Wiley & Sons DNV-GL: Guideline for the Certification of Wind Turbines, 2010 DIN EN 61400: Wind turbines, 2010

Course	Master of Science – Wind Energy Engineering
Module name	Advanced wind farm planning
Abbreviation (if applicable)	AWFP
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Eva-Maria Nikolai, Pavana GmbH
Lecturer/s	Eva-Maria Nikolai, Pavana GmbH
	Dr. Jörg Winterfeldt, Nordex SE
Status within the curriculum	Master Course Wind Energy Engineering
	mandatory optional course
Language	English
Type of course and hours per	4 SH practical laboratory exercises in a computer lab, attendance at all
week	minus one laboratory dates is mandatory, otherwise the claim for grading
	expires
Student workload	Attendance: 60 h
	Private study: 90 h
Credit points	5 ECTS
Preconditions according to	Basics in wind properties
examination regulations	Basics in wind energy theory
	Basics in wind turbine systems
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	• In the first lecture (introduction) the computer capacity is distributed
the module, acquired skills	(no students attendance no claim to one of the limited computer
	workstations) and students will learn what they should have learned in
	their first and second semester of master Wind Energy Engineering
	concerning wind and energy and if they have gaps what they have to
	learn by self-reliant learning, doing the exercises and asking the
	lecturer.
	• Working in the computer lab the students will learn to use the most
	important wind park planning programs WAsP and WindPRO. At
	predefined projects with extended lab manuals students are lead
	trough annual energy productions, the use of wind measurements done
	with the university own wind tower at the campus and its long term
	correction. A resource map is generated. Environmental impacts are
	considered by calculation of noise and shadow emission, visual impact
	and photomontage. The economy of the wind project is calculated.
	Possible are park optimization, electrical grid lay out and others if time
	is left.
	• Finally, the students will be able to evaluate prognoses of wind-energy
	potential. They will be able to calculate and evaluate emissions.
Subjects covered	Energy meteorology, annual energy production calculations, met-tower,
,	short-term long-term measurements, own and public wind resources,
	wake models, programs WindPRO, WAsP et al. e.g. Windfarmer
	• Emissions and influences on the environment, noise, shadow, programs
	Windpro, (Windfarmer) et al.
	Visual impact, visibility, photomontage, programs Windpro,
	(Windfarmer) et al.
	• Electrical layout of windpark, programs Windpro, (Windfarmer) et al.
	• Optimisation of a windpark layout, programs Windpro, (Windfarmer)
	Evaluation of economic efficiency of a wind farm
	Load response (turbine live time and extension)
	Design your wind farm from the scratch
Form of examination	Written laboratory report

Module number [22]: Advanced wind farm planning

Last updated_July 2024

Media used	Computer lab, laboratory experiments, whiteboard, PC and video projector,
	e-learning platform, lecture notes, program manuals
	Power Point Presentations
	In Online terms licenses for students computer, reduced number of
	exercises, clear descriptions and auxiliary files online
Recommended literature	 CEwind, ed. (2014): Understanding Wind Power Technology, Theory, Development and Optimization. Wiley Ltd., Chichester. Chapter 3, van Radecke et.al: Wind resources, site assessment, ecology. CEwind, Hrsg. (2012): Einführung in die Windenergietechnik. Carl Hanser Verlag, München, Kapitel 3, van Radecke et.al: Windressourcen, Standortbewertung, Ökologie Manwell, J.F., McGowan, J.G., Rogers, A.L.: Wind Energy Explained. Wiley, Chichester, 2009 Troen, I. and E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, 1989
	 Manual program Windpro in the lab and online

Course	Master of Science – Wind Energy Engineering
Module name	Offshore wind energy: operation and maintenance
Abbreviation (if applicable)	OWE; O&M
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	DrIng. Axel Birk, Hanseatic Renewable Consulting GmbH
Lecturer/s	DrIng. Axel Birk, Hanseatic Renewable Consulting GmbH
Status within the curriculum	Master Course Wind Energy Engineering
	Compulsory elective course
Language	English
Type of course and hours per	4 SH lectures
week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	Marta la marta de Cara de la Cara
degree programmee	Master degree programme Energy and Environmental Management,
degree programmes	Europa-Oniversitat Flensburg.
	The module is relevant for those of the students from the sub-programme
	Energy and Environmental Management in Developing/Industrial Countries
	who want to expand evicting knowledge in the field of wind energy. It is also
	who want to expand existing knowledge in the field of white energy. It is also
	of interest to a smaller number of students who, in the course of their
	studies in Energy Management, become involved with the certification,
	planning and operation of wind turbines, or who seek employment in the
	field of wind energy following their studies. The Energy and Environmental
	Management degree programme at the European University of Flensburg
	has no comparable courses of its own, so that there is good supplementary
	potential if there is interest and demand.
Learning outcomes: aims of	• The students have a profound knowledge of the general set up and the
the module, acquired skills	functionalities of offshore wind power plants (OWPP)
	They understand the market, the potential and the economics of
	offshore wind energy. They are able to select technical solutions based
	on a balanced evaluation of yield and costs.
	I ne students are able to describe the operational und environmental senditions offeners and their impact on the OWDD
	They know the different types of effehere foundations and are able to
	select the best solution for given environmental conditions
	 The students are able to describe the logistical processes for
	construction, transport, installation and servicing of OWPPs.
	The Module will create general understanding to manage processes to
	operate and maintain wind turbines
	• The competence to use planning methods for intervention (scheduled
	and unscheduled) will be taught
	• The students will learn to create documentation and use life cycle
	management techniques
	• In the course the ability to identify and influence main cost elements of
	U&M phase will be explained
Subjects covered	Ditterences between onshore and offshore applications
	Utishore markets and potential

Module number [23]: Offshore wind energy: operation and maintenance

	Economics of offshore wind parks
	 Operational and environmental conditions offshore
	 Types of fixed and floating foundations
	 Construction and installation of offshore WECs
	• business process O&M (elements, interfaces)
	 scheduled interventions (ressources, timing and cost)
	 unscheduled intervention (ressources, timing and cost)
	Health and Safety
	Documentation needs for Life Cycle Management
	• Spare part management for tear and wear parts or regular spares
	work instructions for O&M
	 RDS-PP as tool to describe wind power plants
Form of examination	Oral examination
Media used	Beamer based presentation
Recommended literature	• Heier, S.: Grid Integration of WIND ENERGY CONVERSION SYSTEMS.
	2nd Edition, John Wiley & Sons Ltd. Chichester, New York, Weinheim,
	Brisbane, Singapore, Toronto, 2006. Translated by Rachel Waddington,
	Swadlincote, UK
	Lesny, Kerstin: Foundations for Offshore Wind Turbines, VGE, 2010
	• Det Norske Veritas (DNV): Regulations for the Design of Offshore Wind
	Turbine Structures, 2005
	 Praxishandbuch Schnittstellenmanagement Offshore Wind EEHH,
	Maritimes Cluster ISBN: 978-3-00-05402024-0
	VGB Power Tech: RDS-PP Guidelines
	• O&M modelling for Large scale offshore wind farms Burcu Özdirik et.al.
	01-2013

	1
Course	Master of Science – Wind Energy Engineering,
Module name	Experimental and computational fluid dynamics
Abbreviation (if applicable)	EFCD
Subtitle (if applicable)	Introduction to flow measurement technology and computational fluid
	dynamics
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. Dr. Steffen Risius, University of Applied Sciences Kiel
Lecturer/s	Prof. Dr. Steffen Risius, University of Applied Sciences Kiel
Status within the curriculum	Master Course Wind Energy Engineering
	Compulsory elective course
Language	English
Type of course and hours per	short introduction with large amounts of practice (2)
week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Sound Knowledge of Wind Turbine Aerodynamics,
examination regulations	Basic knowledge of Linux and C++ or Matlab is helpful
Use of the module in other	No use in other degree programmes
degree programmes	
Learning outcomes: aims of	Introduction to experimental method in fluid dynamics
the module, acquired skills	Measurement of flow properties and important quantities
	Advantages and disadvantages of different experimental methods
	Basic concepts of Computational Fluid Dynamics (CFD)
	Overview over open source solvers for fluid dynamics
	Application and usage of CFD in wind turbine aerodynamics
Subjects covered	Experimental methods for the investigation of wind turbine
	aerodynamics
	Anemometers (e.g. cup, vane, hot-wire, laser-doppler, ultrasonic)
	Optical measurement techniques (e.g. Particle Image Velocimetry (PIV),
	Temperature-Sensitive Paint (TSP), Pressure-Sensitive Paint (PSP))
	Background and basic concepts of Computational Fluid Dynamics
	(CFD)
	Usage of XFOIL (XFLR5) and its application to wind turbine
	aerodynamics
	Introduction to OpenFOAM, Q-Blade and other open source codes
Form of examination	Oral examination
Media used	Numeric exercises on a PC, lab experiments and slide show presentations
Recommended literature	A. P. Schattarczyk, Introduction to Wind Turbine Aerodynamics, 2nd
	Ed., Springer 2020
	Cameron Tropea, Alexander L. Yarin, John F. Foss: Springer Handbook
	of Experimental Fluid Mechanics, Springer 2016
	Moukalled, Mangani: The Finite Volume Method in Computational Fluid
	Dynamics: An Advanced Introduction, Springer 2016

Module number [24]: Experimental and computational fluid dynamics

Course	Master of Science – Wind Energy Engineering			
Module name	Modelling & simulation of wind turbines			
Abbreviation (if applicable)	MaS			
Subtitle (if applicable)	Modelling wind turbines in a commonly used simulation environment for			
	simulating the general behaviour of wind turbines during normal operation			
Seminar (if applicable)	seminar			
Semester	Winter semester			
Person in charge of module	Prof. Dr. Clemens Jauch Flenshurg University of Annlied Sciences			
Lecturer/s	Prof. Dr. Clemens Jauch, Flensburg University of Applied Sciences			
Status within the curriculum	Master Course Wind Energy Engineering			
Status within the curriculum	Compulsory elective course			
Language	English			
Type of course and hours per	2 SH lactures 2SH laboratory exercise			
wook				
Student workload	attendance: 60 h			
Student Workload	nrivato study:90 h			
Cradit points				
	5 EC15			
evamination regulations	computere basis experience in the use of angineering software			
	No was in other domain and grant managements			
degree programmer	no use in other degree programmes			
	The students been the general functionality of a using truthing suctors.			
the module acquired skills	Ine students learn the general functionality of a wind turbine system: The interrelation between wind encode mitch angle rates encode torque			
the module, acquired skills	I ne interrelation between wind speed, pitch angle, rotor speed, torque			
	and power in a wind turbine are discussed to the extent so the students			
	can apply this knowledge in the laboratory			
	I ne lab exercise comprises modelling a general wind turbine system			
	with the simulation tool Matiab/Simulink.			
	Goal of the lab exercise is a running simulation model in			
	Matlab/Simulink that reproduces the response of a wind turbine in			
	terms of pitch angle, rotor speed, torque and power, when subject to			
	variations in the wind speed and variations in grid quantities			
Subjects covered	An Introduction to Modelling and Simulation			
	Fields of Application and Advantages of Modelling and Simulation			
	Simulation Environments for Engineering			
	Time-Dependent and Time-Independent Simulations			
	Time-Invariant and Time-Variant Systems			
	Linear and Non-Linear Systems			
	Differential Equations			
	Numerical Integration			
	Block Diagram Representation			
	Transfer Functions and State Space Approach			
	Modelling Wind Turbines			
	Models of Wind Turbine Subsystems			
	 Wind Model 			
	 Aerodynamics 			
	o Pitch System			
	o Mechanics			
	o Tower			
	o Drive Train			
	 Generator and Converter 			
	o Control			
	 Interface to Power System 			
	Block Diagrams of Different Wind Turbine Systems			

Module number [25]: Modelling & simulation of wind turbines

	Further Topics of Modelling and Simulation		
	Per Unit Representation		
	Initialisation		
	Anti-Windup of Integrators		
	Lookup Function		
Form of examination	Written examination (120 minutes) or oral examination		
Media used	Projector based presentation, blackboard, computer laboratory with		
	Matlab/Simulink software		
Recommended literature	Documentations and examples on the Matlab homepage		
	http://www.mathworks.de/support/		

Course	Master of Science – Wind Energy Engineering			
Module name	Turbine measurements			
Abbreviation (if applicable)	Meas			
Subtitle (if applicable)				
Seminar (if applicable)				
Semester	Winter semester			
Person in charge of module	DiplIng. Axel Sachse, DNV Energy Systems Germany GmbH			
Lecturer/s	DiplIng. Axel Sachse, DNV Energy Systems Germany GmbH			
Status within the curriculum	Master Course Wind Energy Engineering			
	Compulsory elective course			
Language	Fnglish			
Type of course and hours per	4 SH lecture			
week				
Student workload	attendance: 60 h			
	nrivate study: 90 h			
Credit points	5 FCTS			
Proconditions according to	Basics in wind operate theory			
ovamination regulations	Basics in wind turbing systems			
Lice of the module in other	No use in other degree programmer			
degree programmes	No use in other degree programmes			
Learning outcomes sime of	• Vnowledge and understanding of general items about the respective			
the module acquired skills	• Knowledge and understanding of general nems about the respective			
lite filodule, acquired skills	maenuranta standards and the different types of 3 th party and R&D			
	Characteristics of wind turkings			
	Characteristics of white turbines Morrest relevance			
	Market relevance Descibility to losgy the superior of and supervise of the losty and			
	Possibility to learn from the experience and expertise of the lecturers,			
	who come from one of the leading 3 rd party testing companies			
	worldwide with more than 30 years of experience.			
Subjects covered	General overview			
	Standards and Guidelines for Wind Turbine Measurements			
	Prototype testing for certification proposes			
	Power Performance			
	• Loads			
	Acoustics			
	Power Quality			
	Test of Turbine Behavior			
Form of examination	Written examination (120 min) or oral examination			
Media used	Power Point Presentations			
Recommended literature	Wind Turbines - Fundamentals, Technologies, Application, Economics -			
	2nd edition, E Hau, Springer 2013, Hardcover XVIII, 879 ISBN 978-3-642-			
	27150-2, Softcover ISBN 978-3-662-49577-3, eBook ISBN 978-3-642-			
	27151-9			
	Wind Power Plants - Fundamentals, Design, Construction and			
	Operation, Edited by Prof.DrIng.Robert Gasch and DrIng.Jochen Twele			
	James and James October 2012, Softcover 548 pp ISBN 978-3-642-			
	22937-4, eBook ISBN 978-3-642-22938-1			
	• Wind Power in Power Systems, Edited by Thomas Ackermann, Wiley			
	January 2012, Hardcover 1120 pp ISBN 978-0470974162			
	• Wind Energy - The Facts, European Wind Energy Association (EWEA)			
	Routledge, August 2015Hardback, 592 pages, ISBN: 9781138881266			
	• Aerodynamics of Wind Turbines (2nd Edition), Martin O.L. Hansen			
	Earthscan, Hardcover 181pp ISBN 978-1844074389			
	Wind Energy Explained: Theory, Design and Application			
	By James Manwell, Jon McGowan, Anthony Rogers, Hardcover, 704			
	Pages, 2009, Wiley & Sons, publisher, ISBN 978-0470015001			

Module number [26]: Turbine measurements

Course	Master of Science – Wind Energy Engineering			
Module name	Controller design for wind turbines and wind farms			
Abbreviation (if applicable)	CWT			
Subtitle (if applicable)	Design and evaluation of basic feedback and feedforward control loops for			
	wind turbines. Overview on wind farm control.			
Seminar (if applicable)	seminar			
Semester	winter semester			
Person in charge of module	Prof. DrIng. David Schlipf, Flensburg University of Applied Sciences			
Lecturer/s	Prof. DrIng. David Schlipf. Flensburg University of Applied Sciences			
Status within the curriculum	Master Course Wind Energy Engineering			
	Compulsory elective course			
Language	English			
Type of course and hours per	2.SH lectures			
week	2 SH laboratory exercise			
Student workload	attendance: 60 h			
	nrivate study: 90 h			
Credit points	5 FCTS			
Preconditions according to	General basic knowledge in Matlab undergraduate mathematics and			
examination regulations	mechanice			
Use of the module in other	No use in other degree programmes			
degree programmes	No use in other degree programmes			
Learning outcomes: aims of	• The students are able to describe the basis dynamics of wind turbings			
the module acquired skills	 The students are able to design a basic controllor basic filters and 			
the module, acquired skins	• The students are able to design a basic controller, basic finters and additional control loops for wind turbinos and test and evaluate them in			
	Matlab/Simulink			
	The students are able to process lider data and use them for			
	• The students are able to process huar data and use them for			
	The students are able to reproduce the shallonges in wind form control			
	• The students are able to reproduce the chanenges in white farm control			
Subjects covered	Controller design model			
Subjects covered	Baseline nitch and torque control			
	Additional control loops and filter design			
	 Additional control toops and inter design Individual pitch control and other concents 			
	Lidar accisted control			
	Wind form control			
	Floating wind turbing Control			
Form of oxomination	Individual eral examination (20 min)			
Modio usod	Response based presentation blackboard computer laboratory with			
	Deamer based presentation, blackboard, computer laboratory with Matlab/Simulink coftware			
Decommonded literature	Mallad/Sillullik Sollwale			
Recommended Interature	I. Burton, N. Jenkins, D. Snarpe, and E. Bossanyi, wind Energy			
	Handbook – Chapter 8 - The Controller. New York, USA: John Wiley &			
	SONS, 2011.			
	A. Scholdlock, P. Flehning, D. Schilpi, A. Wright, K. Johnson, N. Wang,			
	10 1100/ACC 2016 7F2F112			
	10.1109/ACC.2010./525113			
	• D. Schlipt, Lidar-assisted control concepts for wind turbines, Ph.D.			
	uisseriation, University of Stuttgart, 2016. doi: 10.18419/opus-8/96.			
	G. J. van der veen, I. J. Couchman and R. U. Bowyer, "Control of floating using turbings "2012 American Control Conference deity			
	wind turbines," 2012 American Control Conference doi:			
1	10.1109/ACC.2012.6315120			

Module number [27]: Controller design for wind turbines and wind farms

Course	Master of Science – Wind Energy Engineering				
Module name	Wind energy challenge project				
Abbreviation (if applicable)	WEP				
Subtitle (if applicable)	 a) Mechanical & electrical engineering b) System design (modeling & optimization) c) Physical prototyping d) Project management 				
Seminar (if applicable)	project				
Semester	Currently not offered				
Person in charge of module	N.N.				
Lecturer/s	N.N.				
Status within the curriculum	Master Course Wind Energy Engineering Compulsory elective course				
Language	English				
Type of course and hours per week	Individual: 2 SH project discussion, 2 SH project work				
Student workload	Attendance: 60 h Private study: 90 h				
Credit points	5 ECTS				
Preconditions according to examination regulations	 None, but recommended: handcraft skills interest in research creativity in engineering 				
Use of the module in other degree programmes	No use in other degree programmes				
Learning outcomes: aims of the module, acquired skills	Acquire practical research, developing and manufacturing experience by participating in a wind-specific engineering competition or challenge				
Subjects covered	 Design Theory Practical aerodynamic design (Rotor design tradeoffs, surface finish effects, fairing design, manufacturing) Project-specific theory (e.g. competition) 				
	 Virtual Prototyping CFD: 2D boundary layer code (XFoil), 3D panel method (XFLR5), and rotor BEM (QBlade) Performance Modeling Numerical Optimization 				
	 Physical Prototyping Geometric Dimensioning and Tolerancing (GD&T) Hot wire cutting, 3D printing 				
	 Measurement System characterization (Friction, Drag, etc.) Wind tunnel testing Site assessment Performance measurement Optional: telemetry 				
Form of examination	Periodic design reviews (33%), simulation report (33%), physical prototype (34%)				
Media used	n/a				

Module number [28]: Wind energy challenge project

Last updated_July 2024

	Matlab/ Octave
	• QBlade
	Solid Works
	• openFoam (linux Based)
	BEM Code
	• XFOIL
Recommended literature	• Gaunaa, M., Øye, S. & Mikkelsen, R. (2009). Theory and Design of Flow
	Driven Vehicles Using Rotors for Energy Conversion. In EWEC 2009
	Proceedings online. Brussels: EWEC
	• Marten, D., Wendler, J., Pechlivanoglou, G., Nayeri, C. & Paschereit, C.
	(2009). QBlade: An open source tool for Design and Simulation of
	horizontal and vertical axis wind turbines. International Journal of
	Emerging Technology and Advanced Engineering 3 (Special Issue 3),
	264-269.
	• Meschia, F. (2008). Model analysis with XFLR5. Radio Controlled Soaring
	Digest 25(2), 27-51. [1]
	Competition-/challenge-specific material (TBD)
	Contest Regulations latest release
	• Anderson, J. D.: Fundamentals of aerodynamics. McGraw-Hill series in
	aeronautical and aerospace engineering. Boston: McGraw-Hill 2001
	• Søren Gundtoft: Wind Turbines, 2009
	• Manwell, J. F., McGowan, J. G. u. Rogers, A. L.: Wind energy explained.
	Theory, design and application. Chichester: Wiley 2011

Course	Master of Science – Wind Energy Engineering			
Module name	Green entrepreneurship			
Abbreviation (if applicable)				
Subtitle (if applicable)				
Seminar (if applicable)				
Semester	Currently not offered			
Person in charge of module	Dr. Thomas Neumann, Flensburg University of Applied Sciences			
Lecturer/s	Dr. Thomas Neumann, Flensburg University of Applied Sciences			
Status within the curriculum	Master Course Wind Energy Engineering			
	Compulsory elective course			
Language	English			
Type of course and hours per	4 SH lectures, workshops & meetings			
week				
Student workload	Attendance: 45 h			
	Private study: 105 h			
Credit points	5 ECTS			
Preconditions according to	Sound knowledge of business administration and accounting			
examination regulations				
Use of the module in other	Master degree programme Energy and Environmental Management, Europa-			
degree programmes	Universität Flensburg, sub-programmes Developing/Industrial Countries.			
Learning outcomes: aims of	Students should learn how to start a business and to judge foundations of			
the module, acquired skills	enterprises of others			
	Students learn how to identify new business ideas and to conceptualize, to			
	plan, to finance and to manage them successfully			
	Competencies covered:			
	ability to think entrepreneurial			
	ability to act strategically			
	problem solving competence			
	ability to act target-oriented			
	ability to deal constructively with criticism			
	Interdisciplinary knowledge interdisciplinary communication			
	Interdisciplinary continuucation			
	• methodical competence			
	 social and ethical sense of responsibility 			
	 self-organization 			
	 project organizing skills 			
	ability for project organization			
	ability to deal constructively with criticism			
	collaborative skills			
	teamwork skills			
Subjects covered	This unit introduces the students to the field of entrepreneurship and			
	planning for new business initiatives in the global business environment.			
	The focus of the course are green business foundations and how to harvest			
	green opportunities. Topics include:			
	Entrepreneurial theory			
	Idea generation techniques			
	Value proposition, customer definition and market analysis			
	Key resources, activities and partnerships required			
	Cost structure, revenue models and financing strategies			
	Vision, mission and strategy development			
	Basics of business plan writing			
1	Pitch-presentation workshop			

Module number [29]: Green entrepreneurship

	• The focus of the course are green business foundations and how to		
	harvest green opportunities.		
Form of examination	Oral examination / team project presentation (pitch)		
	Project paper (business plan)		
Media used	Power point, blackboard, business model canvas, internet		
Recommended literature	 Arend, C., Dietrich, M., Maass, D., Pärschke, L. Quehl, P. & Urbach, Y.: The 2019 Berlin-Brandenburg Business Plan Competition Manual, Businessplan – Wettbewerb Berlin-Brandenburg, Berlin, 2019. Hisrich, R. D., Peters; M. P. & Shepherd, D.A.: Entrepreneurship, 10th Edition, McGraw Hill, 2016. Westhead, P., Wright, M. & McElwee, G.: Entrepreneurship: Perspectives and Cases, Prentice Hall, 2011. Hall, Carl: The Environmental Capitalist, 2015 Faltin, Guenter: Brain versus Capital 2018 		
	Current Articles		

Module number [30]: Wind Farm Project Development

Course	Master of Science – Wind Energy Engineering		
Module name	Wind Farm Project Development		
Abbreviation (if applicable)	WFPD		
Subtitle (if applicable)			
Seminar (if applicable)			
Semester	Winter semester		
Person in charge of module	Dr Marina Blohm		
Lecturer/s	Dr. Marina Blohm		
Status within the curriculum	Master Course Wind Energy Engineering		
Status within the curriculum	mandatory-ontional		
Languaga	Inanualory-optional		
Turne of source and hours per	LINGIISA		
Type of course and nours per	4 SIT rectures suppremented by exercises and group work		
Student workload	Attendence: col		
Student Workload	Private study: 00 h		
Cradit painta			
	56015		
Preconditions according to			
examination regulations			
Use of the module in other	Elective course in the Master Sustainable Energy at the Europa-Universitat		
degree programmes	Fiensburg		
Learning outcomes: aims of	Students understand and analyse the current state of knowledge in		
the module, acquired skills	relation to the various stages of wind farm project development		
	Students apply their acquired knowledge to new topics and create		
	solutions independently and in groups		
	Students critically analyse existing wind farm projects and reflect on		
	existing problems and obstacles		
	• Students analyse and critically reflect on the social and ecological		
	consequences of wind energy and wind farm planning		
	• Students create alternative solutions, which have not necessarily been		
	used as standards up to now, to consider social and environmental		
	concerns.		
	Students get to learn a toolkit to justify decisions made and explain		
	their professional actions		
	Students will work independently and in groups and will learn to		
	present and justify their standpoints		
	The knowledge acquired is consolidated through various recurring		
	learning tests		
	• Finally, students are able to plan their own wind farm project, assess		
	the feasibility of new project locations and carry out the entire planning		
	process independently.		
Subjects covered	Introduction to wind farm project development		
	Basics of project management tools		
	Planning and permitting (national requirements, legal aspects,		
	approval procedures, land securing models)		
	Social participation and involvement (stakeholder management,		
	participation processes, financial participation possibilities)		
	Economic analysis / financing of wind farm projects (financial		
	requirements, support mechanisms for renewable electricity)		
	• Wind energy and sector coupling (business models beyond renewable		
	electricity such as storage or hydrogen production, legal and regulatory		
	requirements)		
	Design your wind farm along the entire planning process		
Form of examination	Written report (~10 pages) and oral presentation (10 minutes)		
Media used	PowerPoint presentations, whiteboard, e-learning platform, lecture notes		

Last updated_July 2024

Recommended literature	•	Meier and Rietz (2019) Projektmanagement in der Windenergie –
		Strategien und Handlungsempfehlungen für die Praxis. Springer Gabler.
		URL: <u>https://link.springer.com/book/10.1007/978-3-658-27365-1</u>
	•	Wytrzens (2023) Projektmanagement – Der erfolgreiche Einstieg. 6.
		Auflage. ISBN 978-3-7089-2311-6
	•	AstonEco Management ltd (2019) Earning Local Support for Wind
		Energy Projects in Ireland. URL: <u>https://www.astoneco.com/earning-</u>
		local-support-energy-projects-ireland#
	•	EWEA (2009) The economics of wind energy.
	•	Stiftung Umweltenergierecht (2024) Betriebsbeschränkende
		Nebenbestimmungen bei der Genehmigung von Windenergieanlagen.
		ISSN 2365-7146
	•	Selected scientific papers made available by the lecturer

Course	Master of Science – Wind Energy Engineering,			
Module name	Master thesis			
Abbreviation (if applicable)	-			
Subtitle (if applicable)	-			
Seminar (if applicable)	-			
Semester	4 th semester (or 3 rd for students having been registered for the 2nd semester			
	of the programme immediately)			
Person in charge of module	2 professors of the course of study			
Lecturer/s	-			
Status within the curriculum	Master Course Wind Energy Engineering			
	mandatory course			
Language	English, German (if an application is filed accordingly)			
Type of course and hours per	Writing of final thesis			
week	 Preparation and realisation of colloquium 			
	• The thesis is to be produced in a time period of five months.			
Student workload	attendance: -			
	private study: 900 h			
Credit points	30 ECTS			
Preconditions according to	For students having been registered for the 2nd semester of the programme			
examination regulations	immediately, pursuing the programme as a three-semester course of study,			
	a minimum of 45 credit points (CP) is the prerequisite for admission to the			
	thesis. For students having started with the first semester of the programme,			
	pursuing the programme as a four-semester course of study, a minimum of			
	75 credit points (CP) is the prerequisite for admission to the thesis.			
Aims of the module, acquired	• With the Master's thesis the students show that they are able to			
skills	independently compose a comprehensive work that complies with			
	high methodological, conceptual and scientific demands.			
	• They are also able to present the results in written and oral form.			
Subjects covered	The topic of the thesis has to be related to one of the taken modules of the			
	study and has to be supervised by at least one professor of the study			
	program. Subjects covered:			
	Conception of a work plan			
	Independent study of related literature and methodology			
	Application of methodology			
	Compilation of the thesis			
	Presentation of results			
	Colloquium			
Form of examination	The colloquium is scheduled to take 60 minutes for each candidate			
	(20-30 minutes presentation of thesis and 20-30 minutes oral exam).			
	The grade of the master's thesis is made up of the grade for the written			
	thesis counting 70% and the grade for the colloquium counting 30%.			
Media used	-			
Recommended literature	-			

Module number [31]: Master thesis