Modulhandbuch Masterstudiengang Systemtechnik

Stand November 2019

<u>Programmverantwortung</u>:

Prof. Dr.-Ing. Thies Langmaack, B5 thies.langmaack@hs-flensburg.de

Studienziel

Die Studierenden des Master-Studiengangs Systemtechnik der HS Flensburg sollen ein fundiertes wissenschaftliches Verständnis von technischen Systemen aus unterschiedlichen Anwendungsbereichen erhalten, welches sie auf der Basis der Methoden der verschiedenen Disziplinen (Maschinenbau, Verfahrenstechnik, Elektrotechnik, Informatik, usw.) dazu qualifiziert,

- + komplexe Zusammenhänge in technischen Systemen eigenständig zu untersuchen, zu analysieren und zu simulieren, und auf dieser Grundlage
- + Lösungen für Teilprobleme unter Berücksichtigung der Interdependenzen zu erarbeiten, evtl. zu optimieren sowie diese
- + systematisch zu einer integrierten Systemlösung zusammenzufassen.

Dabei werden die Studierenden auch in den Methoden der Projektplanung, der Projektführung und des Projektmanagements sowie der Projektpräsentation qualifiziert.

Darüber hinaus wird die Fähigkeit geschult, sich schnell, methodisch und systematisch in Neues einzuarbeiten (Selbstlernen). Dadurch werden Selbständigkeit, Teamfähigkeit, vernetztes Denken, Krativität, Offenheit, Kommunikationsfähigkeit und Organisationsvermögen (Sozialkompetenz) entwickelt und gefestigt.

Das Studium ist sowohl wissenschaftich fundiert als auch anwendungsbetont. Studierende werden in die Lage versetzt, auf Basis einses sinnvoll breiten und in ausgewählten Teilgebieten vertieften fachlichen Wissens und einer entsprechenden wissenschaftlichen Methodenkenntnis praxisbezogene Problemstellungen – auch interdiszipiärer Art – nach aktuellem Wissenstand zu lösen.

Dabei spielen computerbasierte Werkzeuge, die in diesem Studium erlernt werden, wie etwa Matlab und Simulink, aber auch wahlweise CFD software, ASPEN, eine große Rolle, um zu einer Lösung zu gelangen ("Computer Aided Engineering").

Studienaufbau

Die Regelstudienzeit beträgt, einschließlich der Master-Thesis, drei Semester.

Das Studienvolumen beträgt 90 Leistungspunkte (CP).

In den beiden Theoriesemestern (Semester 1 und Semester 2) gibt es

- + je 2 Pflichtmodule mit insgesamt 10 CP Umfang
- + je zwei Wahlpflichtmodule mit insgesamt 10 CP Umfang
- + je ein Semesterprojekt mit einer Wertigkeit vom 10 CP.

Das Angebot an Wahlpflichtmodulen wird semesterweise aktualisiert.

Der Masterstudiengang lässt sich mit dem Schwerpunkt "Verfahrenstechnik" studieren, wenn man die vier Wahlpflichtfächer aus dem Bereich Energieeffizienz versorgungstechnischer Systeme, numerische Strömungstechnik CFD, Umwelt- und Sicherheitsmanagement, Verfahrenstechnik 3, Einführung in die numerische Prozesssimulation (CAPE), Bioraffinerie Systeme, Speiseöltechnologie, Fließschemata in Prozesstechnologie und Membrantechnologie wählt.

Die folgenden beiden Tabellen geben einen Überblick über den Studienverlauf des Sommer- und des Wintersemesters:

Sommersemester							
Modul	Lehrver	anstaltu	ing		Prüfung		
		Art	SWS	CP	Art	Form	
Mathematik, Simulation, Numerik	Mathematik, Simulation, Numerik	V/L	4	5	PL	K(2)	
Systemtechnik	Systemtechnik	V/Ü	4	5	PL	SP (Arb, Vortr)	
Wahlpflichtmodul 1	Siehe Katalog			5	PL	Siehe Katalog	
Wahlpflichtmodul 2	Siehe Ka	talog		5	PL	Siehe Katalog	
Projekt 1	Facharbeit, Projekt- management, Präsentation		4	10	PL	SP (Vortr und Arb) ¹	
¹ Die Gewichtung der in die Projektnote eingehenden Bestandteile Schriftliche Ausarbeitung und Vortrag ist im Verhältnis 4:1 durchzuführen.							
Alle Module des Sommersen	Alle Module des Sommersemesters					5 PL	

Wintersemester							
Modul	Lehrve	ranstalt	ung			Prüfung	
		Art	SWS	CP	Art	Form	
Informationstechnik/ Datenbanken	Informations- technik/ Da- tenbanken	Sem	4	5	PL	SP (Arb)	
Strategische Produktent- wicklung	Strategische Produktent- wick-lung	Sem	4	5	PL	SP (Arb)	
Wahlpflichtmodul 3	Siehe K	Siehe Katalog				Siehe Katalog	
Wahlpflichtmodul 4	Siehe K	atalog		5	PL	Siehe Katalog	
Projekt 2	Facharbeit Projekt- management Präsentation		4	10	PL	SP (Vortr und Arb) ²	
² Die Gewichtung der in die Projektnote eingehenden Bestandteile Schriftliche Ausarbeitung und Vortrag ist im Verhältnis 4:1 durchzuführen.							
Alle Module des Winterseme		20	30		5 PL		

Modulhandbuch	Masterstudiengang	Systemtechnik HS Flensburg.	Stand Nov. 20	19
Modullandbuch	Tyraster studiengang	Systemmechnik its mensome.	Stand NOV. 70	1 .7

Module des Sommersemesters

Modulbezeichnung: Mathematik, Simulation, Numerik						
Kürzel	Lehrve	eranstaltung/en	Häufigkeit o		Dauer	
Mathe	N	Iathematik,	Angebots	5	1 Semester	
	Simul	ation, Numerik	Sommerseme	ester		
Studiensemester	Workload		Selbststudium		Präsenzstud.	
1./2. Semester	150 h		90 h		60 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	30	Studierende	4 SWS		5	
Formale	Formale Inhali		Itliche		Verbindlichkeit	
Teilnahmevoraussetz	oraussetzungen Teilnahmevoi		aussetzungen	P	flichtveranstaltung	
keine		ke	reine			

Erfolgreiches Absolvieren einer Klausur

Modulverantwortliche/r

Prof. Dr. rer.-nat. G. Hofmann, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr. rer.-nat. G. Hofmann, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können die elementaren Differenzialgleichungen analytisch lösen..
- Die Studierenden kennen die gängigen numerischen Verfahren und können ihre Eignung zur Lösung bestimmter Probleme beurteilen.
- Bei Problemen mit der Lösung partieller oder gewöhnlicher Differenzialgleichungen mit Standardsoftware sind sie in der Lage, die Probleme zu analysieren und geeignete Verfahren zur Lösung des Problems zu finden.

Inhalte

- Analytische und numerische Lösung gewöhnlicher Differenzialgleichungen
- Lineare Partielle Differenzialgleichungen, Typeinteilung, Modellprobleme
- Separationsansatz für Wärmeleitungsgleichung und Wellengleichung
- Diskretisierung
- Explizite und implizite Verfahren für Wärmeleitungsgleichung
- Potenzmethode, inverse Interation

Lehrformen

Tafelunterricht, betreute Übungen

Medienverwendung

Literatur

Modulbezeichnung: Systemtechnik						
Kürzel	Lehrve	eranstaltung/en	Häufigkeit o			
SysT	Sy	stemtechnik	Angebots	1 Semester		
			Sommerseme	ester		
Studiensemester	\	Vorkload	Selbststudi	um Präsenzstud.		
1./2. Semester		150 h	90 h	60 h		
Sprache	Gr	uppengröße	Umfang	Kreditpunkte		
deutsch	25	Studierende	4 SWS	5		
Formale	•	Inhalt	liche	Verbindlichkeit		
Teilnahmevoraussetz	ungen	Teilnahmevora	aussetzungen	Pflichtveranstaltung		
keine		kei	ne			

Erfolgreiches Bearbeiten eines abgegrenzten Fallbeispiels eines Anfangswertproblems, Präsentation der Arbeitsergebnisse

Modulverantwortliche/r

Prof. Dr.-Ing. V. Staben, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. V. Staben, Fachbereich Energie- und Umweltwissenschaft

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können analytische Modelle für abgegrenzte Fallbeispiele aus den Anwendungsfeldern der Modellbildung und -simulation von Anfangswertproblemen auf Systemebene entwickeln und
- diese in ein Simulationsmodell für eine signalflussbasierte und/oder objektorientierte numerische Simulation umsetzen.
- Sie sind in der Lage, die dafür notwendigen Funktionen der Simulationswerkzeuge Matlab und Simulink zu bewerten, auszuwählen und anzuwenden.
- Die Studierenden können ihre Vorgehensweise beurteilen, ihre Modelle und ihre Simulationsergebnisse kommentieren und validieren sowie ihre Arbeitsergebnisse in Übereinstimmung mit wissenschaftlichen Standards präsentieren.

Inhalte

- Grundlagen der Modellbildung und Simulation,
- Einführung in Matlab und Simulink,
- selbstständiges Bearbeiten von abgegrenzten Aufgabenstellungen aus dem Bereich der Modellbildung und Simulation von Anfangswertproblemen,
- Präsentation der Arbeitsergebnisse

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform

Medienverwendung

Literatur

Modulbezeichnu	ng: Pr	ojekt 1		
Kürzel Pro 1		veranstaltung nesterprojekt	Häufigkeit d Angebots Wintersemes	1 Semester
Studiensemester	١	Vorkload	Selbststudi	ım Präsenzstud.
1./2. Semester		300 h	270 h	30 h
Sprache	Gri	ıppengröße	Umfang	Kreditpunkte
deutsch	< 2	Studierende	2 SWS	10
Formale Teilnahmevoraussetzungen keine		Inhaltliche Teilnahmevoraussetzungen keine		Verbindlichkeit Pflichtveranstaltung

Erfolgreiches Bearbeiten eines abgegrenzten Fallbeispiels, Präsentation der Arbeitsergebnisse

Modulverantwortlicher

Prof. Dr.-Ing. Thies Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Lehrende der Fachhochschule Flensburg

Lernergebnisse (learning outcomes) / Kompetenzen

- Die Studierenden beherrschen Methoden der Ingenieurwissenschaften, des Projektmanagements und der Präsentation von ingenieurtypischen Projekten.
- Die Studierenden können ein komplexes Problem in Einzelprobleme auflösen (Anforderungsliste, Lastenheft, Pflichtenheft).
- Diese Einzelprobleme auch unter einem Systemaspekt lösen (Kreativtechniken),
- die Einzellösungen zu ingenieurwissenschaftlichen Systemen zusammenfassen und
- diese in einem entsprechenden Projekt umsetzen
- Sie können ein solches Projekt ergebnisorientiert planen (Projektplan),
- eine Projektgruppe organisieren und
- den Projektplan organisiert durchführen (Projektverfolgung).
- Sie können die Ergebnisse aufbereiten, einen Report darüber schreiben und in einer Präsentation darstellen.
- Intellektuelle und soziale Kompetenzen werden durch die Vermittlung von abstraktem, analytischem über den Einzelfall hinausgehendem und vernetztem Denken herausgebildet.
- Es wird die Fähigkeit geschult, sich schnell methodisch und systematisch in Neues einzuarbeiten. Dadurch werden Selbständigkeit, Teamfähigkeit, vernetztes Denken, Kreativität, Offenheit, Kommunikationsfähigkeit und Organisationsvermögen entwickelt und gefestigt

Inhalte

Das Projektmodul umfasst sowohl die Teilnahme an Präsenzveranstaltungen, als auch die Anfertigung einer Semesterarbeit und deren Präsentation.

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform. Bei in der Hochschule durchgeführten Projekte soll eine Mindestgruppengröße von 3 Personen sichergestellt sein.

Im SS 2019 werden von den Wahlpflichtfächern angeboten:

- + Sondergebiete der EMV
- + Energieeffizienz Versorgungstechnischer Systeme
- + Systeme der Elektromechanischen Antriebstechnik
- + Numerische Strömungstechnik CFD
- + Werkstofftechnik
- + Umwelt- und Sicherheitsmanagement
- + Verfahrenstechnik 3
- + Objektorientierte Programmierung
- + Antriebstechnik
- + Modellierung von Windenergieanlagen
- + Elektrische Maschinendynamik

Ob diese Kurse tatsächlich zustande kommen,

hängt davon ab, ob die Mindestteilnehmerzahl überschritten wird.

Einige der fehlenden Kurse werden evtl. im WS 2019/20 angeboten werden.

Modulbezeichn	ung: Sy	steme der E	lektromechar	nischei	n Antriebstechnik
Kürzel	Lehrve	eranstaltung/en	Häufigkeit d	es	Dauer
EAt		e der mechanischen stechnik	Angebots Sommersemester		1 Semester
Studiensemester	1	Norkload	Selbststudium		Präsenzstud.
1./2. Semester		150 h	90 h		60 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	25	Studierende	4 SWS		5
Formale Teilnahmevoraussetzungen		Inhali Teilnahmevor	tliche aussetzungen	Verbindlichkeit Wehlnflichtverensteltung	

Formale	Inhaltliche	Verbindlichkeit
Teilnahmevoraussetzungen	Teilnahmevoraussetzungen	Wahlpflichtveranstaltung
keine	Grundlagen der Elektrotechnik und Mechanik (LV des Bachelorstudiums)	

120-minütige schriftliche Prüfung oder alternative Prüfungsleistung,

Modulverantwortliche/r

Prof. Dr.-Ing. Jo Berg, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Jo Berg, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden erkennen den Antriebsstrang als Ganzes und
- sind in der Lage, eine strukturierte Ordnung unterschiedlichster Eingangs- und Ausgangsgrößen zu spezifizieren um den Antriebsstrang insgesamt optimal auszulegen.
- Sie sind in Lage den Arbeitspunkt der Anwendung zu definieren,
- die Stabilität des Arbeitspunktes zu betrachten und
- dynamische Vorgänge zu berechnen.
- Die Auslegung und Handhabung elektromechanischer Maschinen und Antriebe mittels gängiger Softwaretools ist ihnen bekannt.

Inhalte

- Kinematische und energetische Betrachtung des Antriebsstrangs
- Antriebsstrang: Energiespeicher, Steuerung, Energiewandler
- Antriebssysteme in Fertigungsanlagen
- Sekundärenergiespeicher in Elektrofahrzeugen mit einfacher Antriebsstruktur unter Berücksichtigung der Hilfsantriebe
- Grundlagen elektrischer Maschinen: Arten, Aufbau, Grundgesetze, Kennlinien, Stell- und
- Bremsmöglichkeiten von Gleich- und Drehstrommaschinen
- Modellbildung: Transformationen im Antriebssystem, rotatorische und translatorische Bewegung, mechanische Leistung, kinetische Energie, statisches und dynamisches Verhalten
- Dimensionierung der Antriebsmaschine: Verlustleistung, Wärmebeständigkeitsklassen,
- Thermisches Verhalten, Betriebsarten, Kriterien/Verfahren zur Antriebsmaschinenauswahl unter Berücksichtigung der IE3/IE4

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform, Simulation mittels Notebook und Beamer, Vorführversuche

Medienverwendung

Tafel, Folien, Powerpoint-Präsentation,

Literatur

- Fischer: Elektrische Maschinen, Hanser-Verlag 2011:
- Kiel, E.: Antriebslösungen. Springer Verlag, Berlin, Heidelberg 2007
- Binder: Elektrische Maschinen und Antriebe, Spinger Verlag Heidelberg
- Kraftfahrtechnisches Taschenbuch, Bosch
- Hybrid-, Batterie- und Brennstoffzellen-Elektrofahrzeuge, Naunin, Expert-Verlag
- Klein: Einführung in die DIN-Normen, Teubner Verlag
- Schröder, D.: Elektrische Antriebe -- Regelung von Antriebsystemen. Springer Verlag, Berlin, Heidelberg 2009
- Weißgerber: Elektrotechnik für Ingenieure, Band 1+2, Springer und Vieweg 2012
- Laborskripte und Übungsaufgaben des Labors Antriebstechnik

Modulbezeichnung: Antriebstechnik						
Kürzel	Lehrve	eranstaltung/en	Häufigkeit o		Dauer	
AT	Analyse	e und Simulation	Angebots	6	1 Semester	
	Antri	ebstechnischer	Sommerseme	ester		
		Systeme				
Studiensemester	1	Norkload	Selbststudium		Präsenzstud.	
1./2. Semester		150 h	90 h		60 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	4 SWS		5	
Formale	Formale Inhali		tliche		Verbindlichkeit	
Teilnahmevoraussetz	ahmevoraussetzungen Teilnahmevor		aussetzungen	Wal	nlpflichtveranstaltung	
keine		ke	ne			

Erfolgreiches Bearbeiten eines abgegrenzten Fallbeispiels eines Anfangswertproblems, Präsentation der Arbeitsergebnisse

Modulverantwortlicher

Prof. Dr.-Ing. Nils Werner, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Nils Werner, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Prof. Dr.-Ing. Axel Krapoth, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

Die Studierenden erlernen die erweiterten Grundlagen der Antriebstechnik und deren Simulation.

- Sie können in Strukturen denken und
- die erlernten Denkweisen und Techniken in verschiedenen technischen und naturwissenschaftlichen Zusammenhängen verknüpfen und anwenden.
- Sie sind in der Lage, Antriebskonzepte zu beurteilen und selbständig Lösungen für Antriebsaufgaben zu entwerfen.
- Sie können Antriebsstränge mit Hilfe von Mehrkörpersimulationssystemen modellieren.

Inhalte

- Kennlinien, Kennfelder von Kraft- und Arbeitsmaschinen
- Antriebstechnische Systeme
- Mobilantriebe, Fahrzustandsdiagramm
- Hybridantriebe
- Leistungsverzweigungsgetriebe
- Schwingungen mechanischer Antriebssysteme
- Schwingungsisolierung von Antrieben
- Fehlerfrüherkennung an Zahnrädern und Wälzlagern
- Einführung in das Programmsystem ADAMS als Beispiel eines Mehrkörpersimulationssystems

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform, Hands-On Seminar im Simulationslabor

Medienverwendung

Tafel, Präsentationsmaterial, Computerprogramme, Simulationen

Literatur

wird in der Vorlesung bekannt gegeben

Modulbezeichnung: Sondergebiete der EMV								
Kürzel	Lehrveranstaltung/en	Häufigkeit des	Dauer					
EMV	Sondergebiete der	Angebots	1 Semester					
	EMV	Sommersemester						
Studiensemester	Workload	Selbststudium	Präsenzstud.					
1./2. Semester	150 h	90 h	60 h					
Sprache	Gruppengröße	Umfang	Kreditpunkte					
deutsch	max. 10 Studierende	4 SWS (2V+2L)	5					

Formale		Inhal	tliche		Verbindlichkeit
Teilnahmevoraussetzur	ngen	Teilnahmevor	aussetzungen	Wal	nlpflichtveranstaltung
Erfolgreiche Teilnahme		_	Teilnahme an		
Grundlagen der EMV entv		•	EMV entweder		
im Bachelor- (X) ODER	≀ im	im Bachelor-	(X) ODER im		
Masterstudium		Masters	studium		

Erfolgreiche Bearbeitung der Laboraufgaben und Bestehen einer Abschlussklausur

Modulverantwortliche/r

Prof. Dr.-Ing. Klaus-Dieter Kruse, Fachbereich Information und Kommunikation

Hauptamtlich Lehrende

Prof. Dr.-Ing. Klaus-Dieter Kruse, Fachbereich Information und Kommunikation

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden kennen die Störphänomene und ihre Ursachen
- Sie sind in der Lage, normative Vorgaben physikalisch sinnvoll zu interpretieren.
- Die Studierenden sind mit der aktuellen EMV- Mess- und Prüftechnik sowie den zugehörigen Normen vertraut und können diese in der Praxis anwenden.
- Sie können einfache Simulationen im EMV-Bereich mit aktueller Software durchführen und die Ergebnisse interpretieren

Inhalte

- Übersicht über aktuelle Arbeits- und Forschungsgebiete in der EMV, kurze Wiederholung der wichtigsten Grundlagen
- Störmodelle, Prüfphilosophie und Qualitätssicherung
- Grundlagen der EMV -Mess-und Prüftechnik
- selbstständiges Bearbeiten von abgegrenzten Aufgabenstellungen aus der EMV- Mess-und Prüftechnik
- Einführung in die Simulation EMV-technischer Problemstellungen mit CST und die messtechnische Überprüfung der Ergebnisse
- Ggfs. Exkursion

Lehrformen: Vorlesung in seminaristischer Lehrform, Labor mit Workshopcharakter

Medienverwendung: E-Tafel, Beamer

Literatur: Aktuelle einschlägige Normen und wiss. Veröffentlichungen

Modulbezeichnu	ng:	Einführun Strömung	ng in gsberechnung	die g (CFD)	Numerische)
Kürzel	Lehrve	eranstaltung/en	Häufigkeit d	des	Dauer
CFD	Einf	Führung in die	Angebots	6	1 Semester
	_	Numerische ungsberechnung	Sommersemester		
Studiensemester	١	Vorkload	Selbststudium		Präsenzstudium
1./2. Semester	150 h		90 h		60 h
Sprache	Gru	ıppengröße	Umfang		Kreditpunkte
deutsch	24	Studierende	4 SWS		5
Formale		Inhalt	tliche	,	Verbindlichkeit
Teilnahmevoraussetzi	ungen	Teilnahmevor	Teilnahmevoraussetzungen		pflichtveranstaltung
keine		Strömungs Thermody	antnisse in amechanik, namik und ertragung		-

Erfolgreiche Teilnahme an der Klausur, regelmäßige Teilnahme am PC-Labor

Modulverantwortliche/r

Prof. Dr.-Ing. Claus Werninger, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Techologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Claus Werninger, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Techologien

M.Eng. Julius Kruse, Fachbereich Information und Kommunikation

Lernergebnisse (learning outcome) / Kompetenzen

- Den Studierenden werden die physikalischen Grundlagen vermittelt, die die Feldgrößen bei der Bewegung fluider Materie (Geschwindigkeit, Druck, Temperatur, Turbulenzgrößen, Dichte u.a.m.) beschreiben.
- An einigen Übungsbeispielen vollziehen die Studierenden den Simulationsprozess nach: Geometriedarstellung des Strömungsfelds, die Vernetzung der Geometrie mit wechselnder räumlicher Auflösung sowie die Definition der dem Problem zugrundeliegenden, angepassten Physik.
- Schließlich erlangen die Studierenden noch Kenntnisse und Erfahrungen in der Auswahl und Einstellung passender numerischer Einstellungen in der CFD Software, um die Simulationsaufgabe zu einer konvergenten Lösung zu führen.
- Die Studierenden können eine Problemstellung zur Simulation aufbereiten, passende Modelle gestalten, eine numerische Lösung erzielen und die Ergebnisse darstellen. Sie sind in der Lage die Ergebnisse zu validieren und wissenschaftlich zu interpretieren.

Inhalte

- Herleitung der Erhaltungsgleichungen für Masse, Impuls und Energie
- Diskussion der Turbulenz: Phänomen und Modellierung

- Diskussion der Betriebs- und Randbedingungen im allgemeinen und in ihrer Umsetzung in einer CFD-Software
- Diskretisierung der Erhaltungsgleichungen für die Finite-Volumen-Methode (FVM)
- Lösungsalgorithmen zur iterativen Berechnung der Feldgrößen Geschwindigkeit, Druck, Temperatur u.a.m.
- Visualisierung der Lösungsgrößen

Lehrformen

Vorlesung und PC-Labor zur individuellen Einübung der Simulation mit der Software ANSYS Fluent

Medienverwendung

Literatur

• Lecheler, S. Numerische Strömungsberechnung, 3. Auflage Vieweg und Teubner, 2014

 Oertel, H. Numerische Strömungsmechanik, 5. Auflage Laurien, E. Vieweg und Teubner, 2013

• Versteeg, H. An Introduction to Computational Fluid Dynamics: Malalasekera The Finite Volume Method, 2. Auflage

Prentice Hall, 2007

Modulbezeichnu	ıng: W	erkstofftechn	ik		
Kürzel		eranstaltung/en	Häufigkeit des Angebots Sommersemester		Dauer 1 Semester
WKt	We	ochtemperatur- erkstoffe ruchmechanik			1 Semester
Studiensemester	1	Norkload	Selbststudi	um	Präsenzstud.
1./2. Semester		150 h	90 h		60 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	25	Studierende	4 SWS		5
Formale Teilnahmevoraussetz					erbindlichkeit flichtveranstaltung
keine		kei	ne		C

Bestehen einer zweistündigen Klausur

Modulverantwortliche/r

Prof. Dr.-Ing. M. Dahms, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. M. Dahms, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien Prof. Dr.-Ing. U. Zerbst, Bundesanstalt für Materialprüfung, Berlin

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können anhand eines Anforderungsprofils einen geeigneten Hochtemperaturwerkstoff gezielt auswählen.
- Sie sind in der Lage, einen verwendeten Hochtemperaturwerkstoff in Bezug auf seine Eignung zu bewerten.
- Sie sind in der Lage, Schäden an Hochtemperaturwerkstoffen zu bewerten.
- Sie sind in der Lage, eine Konstruktion überschlagsmäßig bruchmechanisch zu bewerten.
- Sie können bruchmechanische Konzepte zur Aufklärung eines Schadens anwenden.

Inhalte

- Hochtemperaturwerkstoffe
 - Mechanisches Verhalten metallischer Werkstoffe bei hohe Temperaturen
 - Chemisches Verhalten metallischer Werkstoffe bei hohen Turen
- Bruchmechanik
 - Bruchmechanische Modellbildung
 - Bruchmechanische Werkstoffkennwerte

Lehrformen

Vorlesung in seminaristischer Lehrform

Medienverwendung

Literatur

Bürgel, Handbuch der Hochtemperatur-Werkstofftechnik

Zerbst, Skript Bruchmechanik

Modulbezeich	Modulbezeichnung: Energieeffizienz versorgungstechnischer Systeme				
Kürzel	Lehrveranstaltung/en	Häufigkeit des Angebots	Dauer		
EEVS	Energieeffizienz versorgungstechnischer Systeme	Sommersemester	1 Semester		
Studiensemester	Workload	Selbststudium	Präsenzstud.		
1./2. Semester	150 h	90 h	60 h		
Sprache	Gruppengröße	Umfang	Kreditpunkte		
deutsch	25 Studierende	4 SWS	5		

Formale Teilnahmevoraussetzungen	Inhaltliche Teilnahmevoraussetzungen	Verbindlichkeit Wahlpflichtveranstaltung
keine	Thermodynamik, Wärme- übertragung, Strömungslehre, (Steuerungs- und Regelungstechnik)	, unipriority visiting

Klausur 2,0 h oder Arbeit und Vortrag

Modulverantwortliche/r

Prof. Dr.-Ing. Dirk Volta, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. Dirk Volta, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

Die Studierenden sind in der Lage, wesentliche Zusammenhänge der Anlagentechnik und dessen Betriebsführung zu erkennen und daraus Optimierungspotentiale abzuleiten.

Anlagen, weisen im realen Anlagenbetrieb eine andere (meist schlechtere) Effizienz auf, als im stationären, ausgelegten Leistungsbereich. Hinzu kommt der individuelle Bedarfsmix der Betriebe an Technischen Medien wie bspw. Kälte und Druckluft. Die Studierenden lernen daher auch das dynamische Verhalten komplexer Verbundstrukturen zu erfassen, und daraus Verbesserungsmaßnahmen abzuleiten.

Die Erkenntnisse können in der Praxis sowohl in der Planung, als auch in der Optimierung bestehender Anlagensysteme angewendet werden. Anlagen beziehen sich im Kontext der Vorlesung auf:

- die Kälte-, Druckluft-, Wasser- und Wärmeversorgung,
- sowie jeweils deren Verbrauchern
- und Kopplungssystemen (z.B. Wärmerückgewinnung (WRG))

Inhalte

- Grundlagen versorgungstechnischer Systeme
- Kälteversorgung und -nutzung
- Wärmeversorgung und -nutzung
- Druckluftversorgung
- Wasserversorgung und -nutzung
- Versorgungsnetze
 - o Auslegung, Anhaltswerte
 - o Hydraulischer Abgleich
 - o Regelung hydraulischer Weichen
- Kopplungssysteme
 - Systematischer Ansatz

- o 3-R-Methode am Beispiel der Wassernutzung
- o WRG-Kälte
- WRG-Ofenprozesse
- WRG-Druckluft
- Kennzahlen
 - o Übersicht üblicher Kennzahlen
 - Das Physikalische Optimum
 - Methode des normierten Aufwands

Lehrformen: Seminaristischer Unterricht, Vorlesung, Gruppenarbeit, Übungsaufgaben, Beispiele.

Medienverwendung: Skript, Anhang zur Vorlesung, Tafel/Board, Präsentation (Power-Point), Kurzfilme.

Literatur:

- Recknagel: Taschenbuch für Heizung + Klimatechnik
- Arbeitskreis der Professoren für Regelungstechnik in der Versorgungstechnik (Hrsg.): Regelungs- und Steuerungstechnik in der Versorgungstechnik. VDE Verlag, 7. Auflage, 12. September 2014.
- Blesl, M./Kessler, A.: Energieeffizienz in der Industrie. Springer-Vieweg, 2013.
- Hesselbach, J.: Energie- und Klimaeffiziente Produktion. Grundlagen, Leitlinien und Praxisbeispiele, Springer-Vieweg, 2012.
- Meyer, J.: Rationelle Energienutzung in der Ernährungsindustrie. Vieweg, Dezember 2000.

Modulbezeichnu	ng: Modelling and	Simulation of Wind	Turbines
Kürzel	Lehrveranstaltung/en	Häufigkeit des	Dauer
MaS	Modelling and	Angebots	1 Semester
	Simulation of Wind Turbines	Sommersemester	
Studiensemester	Workload	Selbststudium	Präsenzstud.
1./2. Semester	150 h	90 h	60 h
Sprache	Gruppengröße	Umfang	Kreditpunkte
Deutsch oder englisch	25 Studierende	4 SWS	5

Formale Teilnahmevoraussetzungen	Inhaltliche Teilnahmevoraussetzungen	Verbindlichkeit Wahlpflicht
keine	Grundlegende Kenntnisse in Mathematik für Ingenieure,	-
	Grundlegende Fähigkeiten im Umgang mit Computern,	
	Grundlegende Erfahrung mit Engineering Software,	
	Ausreichende Englischkenntnisse um der Vorlesung folgen zu können	

Bestehen der zweistündigen Klausur

Modulverantwortliche/r

Prof. Dr. Clemens Jauch, Institut für Windenergietechnik, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr. Clemens Jauch, Institut für Windenergietechnik, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden beherrschen die Grundlagen der Modellbildung und Simulation von technisch/physikalischen Systemen.
- Die Studierenden verstehen die grundlegende Funktionsweise einer Windenergieanlage.
- Das Zusammenspiel von Windgeschwindigkeit, Pitchwinkel, Rotordrehzahl, Drehmoment und Leistung einer Windenergieanlage wird soweit verstanden, dass dazu ein Simulationsmodell erstellt werden kann.
- Die für die Erstellung und Benutzung des Simulationsmodells erforderliche Software Matlab/Simulink wird beherrscht.

Inhalte

- Grundlagen der Modellbildung und Simulation,
- Einführung in Matlab und Simulink,
- Modelle der unterschiedlichen Subsysteme in einer Windenergieanlage,
- Simulationsmodellspezifische Probleme

Lehrformen

- Vorlesung im Dialog mit den Studierenden
- Laborübung

 Die Vorlesungsunterlagen, die Laboranweisungen, und bei internationalem Auditorium auch die Vorlesung, sind in englischer Sprache

Medienverwendung

Tafelanschrieb, PowerPoint Präsentationen, Computerlabor

Literatur

/lodulbezeichnu	ıng: Ol	ojektorientier			
Kürzel OoP	Obje	eranstaltung/en ktorientiertes grammieren	Häufigkeit des Angebots Wintersemester		Dauer 1 Semester
Studiensemester	١	Vorkload	Selbststudiu	ım	Präsenzstud.
1./2. Semester		150 h	90 h		60 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	< 25	Studierende	4 SWS		5
Formale Teilnahmevoraussetzungen		Inhalt Teilnahmevora		V	erbindlichkeit

	Inhal	tliche		Verbindlichkeit
ngen	Teilnahmevor	aussetzungen	Wal	nlpflichtveranstaltung
	ke	ine		
	ngen	ngen Teilnahmevor	Inhaltliche ngen Teilnahmevoraussetzungen keine	ngen Teilnahmevoraussetzungen _{Wah}

Bestandene Prüfung (Klausur 120 min), regelmäßige Teilnahme an den Laborübungen

Modulverantwortliche/r

Prof. Dr.-Ing. J. Wendiggensen, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Dr.-Ing. Parissa Sadeghi, Fachbereich Energie und Biotechnologie

Prof. Dr.-Ing. J. Wendiggensen, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

Die Studierenden kennen die wichtigsten Entwurfsmuster der objektorientierten Programmierung und können diese gezielt zur Lösung von Programmieraufgaben auswählen und implementieren. Sie können ein einfaches Userinterface gestalten und programmieren und sind in der Lage eine Problemstellung im Hinblick auf die objektorientierte Programmierung zu analysieren und mit Hilfe des MVC Ansatzes Lösungen zu implementieren.

Inhalte

- Kontrollstrukturen, Methoden, Referenzen
- Klassen und Objekte
- Vererbung
- Polymorphie
- Speichern von Objekten, Streams
- Einführung GUI
- Observer-Muster
- Adapter-Muster
- Decorator-Muster, Facade-Muster
- Kollektionen
- Model-View-Control
- Veröffentlichen von Code

Lehrformen

Vorlesung in seminaristischer Form, Vorführung der Codeentwicklung im Labor

Medienverwendung

Tafel, Präsentation, Arbeitsunterlagen,

Modulbezeichnung: Umwelt- und Sicherheitsmanagement

Teilbereich Sicherheitsmanagement

Kürzel USM	Lehrveranstaltung/en Sicherheitsmanagement	Häufigkeit des Angebots	Dauer 1 Semester
Studiensemester	Workload	Sommersemester Selbststudium	Präsenzstud.
1./2. Semester	75 h	45 h	30 h
Sprache deutsch	Gruppengröße 25 Studierende	Umfang 2 SWS	Kreditpunkte 2,5 (3)

Formale	Inhaltliche		Verbindlichkeit
Teilnahmevoraussetzungen	Teilnahmevoraussetzungen	Wa	hlpflichtveranstaltung
keine	keine		

Voraussetzungen für die Vergabe von Kreditpunkten für diesen Teilbereich

Erfolgreiche Teilnahme an schriftlicher Prüfung oder Bearbeitung eines Projektes;

Diese Veranstaltung ergänzt sich mit der Vorlesung Umweltmanagement von Frau Prof. Dr.-Ing. W. Vith; beide Teilbereiche werden jedoch einzeln abgeprüft, um mehr Variation zu ermöglichen.

Modulverantwortliche

Prof. Dr.-Ing. W. Vith, Prof. Dr.-Ing. Thies Langmaack,

Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende für diesen Teilbereich "Sicherheitsmanagement"

Prof. Dr.-Ing. Thies Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

Kenntnisse

- Kenntnis üblicher Gefährdungen und von möglichen Gegenmaßnahmen
- Verständnis der Grundprinzipen des Sicherheitsmanagements

<u>Fertigkeiten</u>

- Fähigkeit, Gefährdungen aktiv zu minimieren
- Fertigkeiten in wesentlichen Werkzeugen wie Gefährdungsanalyse/Gefährdungsprävention, Root Cause Analyse, Aufrechterhalten eines Managementsystems

K<u>ompetenzen</u>

- Problembewusstsein als Auditor/Mitarbeiter
- Lösungskompetenz: Substitution, Technisch, Operativ, Persönlich

Inhalte

- 1. Einführung: Warum Sicherheit?
- 2. Grundlagen und Grundprinzipien des Sicherheitswesens (Risiko/Gefährdung/Schutz)
- 3. Standortkultur: Das gelebte Managementsystem
- 4. Typische Anforderungen/Elemente eines Managementsystems
- 5. Gefährdungen mit tödlichem Potential und Gegenmaßnahmen

6. Integrierte Managementsysteme

Alles unterlegt mit vielen Beispielen aus der eigenen Praxis

Lehrformen

Vortrag und Übungen in Kleingruppen

Medienverwendung

Tafel und Beamer

Literatur – alles zum Herunterladen im Internet

BG ETEM ,Verantwortung in der Unfallverhütung', 2016

BGI 587 , Arbeitsschutz will gelernt sein', 2004

BG RCI ,Vision Zero', 2017

baua ,Sicherheit und Arbeitsschutz mit System', 2011

Modulbezeichnung: Umwelt- und Sicherheitsmanagement

Teilbereich Sicherheitsmanagement

Kürzel USM	Lehrveranstaltung/en Umweltmanagement	Häufigkeit des Angebots Sommersemester	Dauer 1 Semester
Studiensemester	Workload	Selbststudium	Präsenzstud.
1./2. Semester	75 h	45 h	30 h
Sprache	Gruppengröße	Umfang	Kreditpunkte
deutsch	25 Studierende	2 SWS	2,5 (3)

Formale	Inhaltliche		Verbindlichkeit
Teilnahmevoraussetzunge	n Teilnahmevoraussetzu	ngen Wal	hlpflichtveranstaltung
keine	keine		

Voraussetzungen für die Vergabe von Kreditpunkten für diesen Teilbereich

Erfolgreiche Teilnahme an schriftlicher Prüfung oder Bearbeitung eines Projektes

Modulverantwortliche

Prof. Dr.-Ing. W. Vith, Prof. Dr.-Ing. Thies Langmaack,

Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende für diesen Teilbereich

Prof. Dr.-Ing. Wiktoria Vith, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Idee und Anwendungsbereich des Umweltmanagement
- Verständnis der Grundprinzipen des Umweltmanagements
- Bewertung der unternehmerischen Motivation für Entwicklung und Aufrechterhaltung des UM-Systems
- Fertigkeiten in ausgewählten Werkzeugen des Umweltmanagements wie LCA-Analyse

Inhalte

- 1. Umweltrecht und Umweltpolitik
- 2. Bedeutung der DIN EN ISO 14001
- 3. Struktur und Phasen des Umweltmanagementsystems
- 4. Geschäftsprozess
- 5. Umweltbilanz/Umweltaspekte
- 6. Verbesserungspotenzial im Umweltbilanz

Alles unterlegt mit vielen Beispielen aus der eigenen Praxis.

Lehrformen

Vortrag und Übungen in Kleingruppen

Medienverwendung

Tafel und Beamer

Modulbezeichnu	ng: Ve	erfahrenstech	nnik 3		
Kürzel	Lehrve	eranstaltung/en	Häufigkeit o	des	Dauer
VT3	Verfahi	renstechnik 3	Angebots	3	1 Semester
			Sommerseme	ester	
Studiensemester	١	Workload Selbststudiu		um	Präsenzstud.
1./2. Semester	150 h		50 h 90 h		60 h
Sprache	Gr	uppengröße Umfa			Kreditpunkte
deutsch	25	Studierende 4 SWS			5
Formale	L	Inhal	tliche		Verbindlichkeit
Teilnahmevoraussetzungen		Teilnahmevor	aussetzungen	Wal	hlpflichtveranstaltung
Erfolgreicher Besuch der		Wärme- und St	offübertragung,		
Vorlesungen VT1 und VT2			Grundlagen der		
		mechanischen u	and thermischen		
		Verfahre	enstecnik		

20-minütige mündliche Prüfung zu den Vorlesungsinhalten

Modulverantwortliche/r

Prof. Dr.-Ing. Thies Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Wiktoria Vith, Prof. Dr.-Ing. Claus Werninger, Prof. Dr. Hinrich Uellendahl, Prof. Dr.-Ing. Thies Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden begreifen die Zusammenhänge in verfahrenstechnischen Prozessen zwischen den einzelnen Prozessparametern insbesondere hinsichtlich Stofftransport und Strömungsverhältnissen (auch in mehrphasigen Systemen)
- sind in der Lage, eine strukturierte Ordnung zwischen den Prozessparametern zu erkennen und diese gezielt zu variieren/optimieren – mit dem Hintergrundwissen der gegenseitigen Beeinflussung
- Die Studierenden erkennen die Anwendungsmöglichkeiten der verfahrenstechnischen Grundlagen zur Auslegung, zum Scale Up und zur Optimierung von komplexen Prozessen und können diese anwenden
- lernen die Anwendung an ausgewählten Prozessen der Membran-, Bioverfahrens-, und Trocknungstechnik und sind in der Lage, diese auf ähnliche Prozesse zu übertragen
- Erkennen die besonderen Randbedingungen bioverfahrenstechnischer Prozesse und sind in der Lage, diese in den Rahmen allgemeiner Prozesse einzuordnen und zu optimieren.

Inhalte

- Grundlagen der Mehrphasenströmung
- Vertiefende Betrachtungen zur Stoffübertragung
- Verweilzeitverhalten von Reaktoren
- Grundlagen und Anwendungen der Trocknungstechnik
- Grundlagen und Anwendungen der Membrantechnik
- Besonderheiten von Bioprozessen gegenüber chemischen Prozessen in der Verfahrenstechnik;
 Kinetik, Produktivität und Ertrag

• Scale Up und Beispiele der Bioprozesstechnik in Grossanlagen (Biogasanlagen, Abwasserbehandlung, Bioethanolproduktion, Lebensmitteltechnik)

Lehrformen

Vorlesung in seminaristischer Lehrform

Medienverwendung

Tafel, Folien, Powerpoint-Präsentation,

Literatur

• Schwister, Leven: Verfahrenstechnik für Ingenieure, 2013, Carl Hanser Verlag

Modulbezeichnung: Elektrische Maschinendynamik

Modulverantwortliche(r):	Prof. DrIng. Joachim Berg			
Dozent(in):	Prof. DrIng. Joachim Berg			
Sprache:	Deutsch			
Zuordnung zum	M-Sys			
Curriculum	Wahlpflichtveranstaltung Sommersemester			
Lehrform / SWS:	Vorlesung 4 SWS			
Arbeitsaufwand:	Präsenzstudium: 60 h			
77	Eigenstudium: 120 h			
Kreditpunkte:	5			
Voraussetzungen:	- Formal: Orientierungsprüfung			
	- Inhaltlich: Teilnahme an den LV Elektrotechnik, Mathematik 1 bis 3, Elektrische Maschinen 1 und 2			
Lernziele /	Kenntnisse:			
Kompetenzen:	- Grundbegriffe der elektrischen			
	Maschinendynamik mit unterschiedlichen			
	Lastmomenten. Aufstellen und Lösen der			
	Differentialgleichungen			
	<u>Fertigkeiten:</u>			
	- Berechnung und Auslegung des			
	dynamischen Antriebsstranges			
	- Thermische Beurteilung bei dynamischen			
	Problemstellungen			
	- Beurteilung des Antriebsstranges über			
	errechnete Kennzahlen			
	Kompetenzen:			
	- Die Studierenden sind in der Lage, in			
	Abhängigkeit von der Arbeitsmaschine den			
	Antriebsstrang für Industriemaschinen			
	dynamisch auszulegen.			
Inhalt:	1)Auswirkungen der Stromoberschwingung auf das			
	Betriebsverhalten der Synchronmaschine bei			
	Frequenzumrichterspeisung			
	2)Statische Stabilität der der Synchron-Vollpolmaschine			
	3)Synchronmaschinen am starren Netz- und im Inselbetrieb			
	4)Betriebsgrenzen von PM-Synchronmaschinen mit			
	Querstromeinspeisung			
	5)Synchronisierung nach erfolgtem Hochlauf			
	6)Netzbetrieb der Synchron Reluktanzmaschine 7)Betriebsverhalten und Einsatz der SReluktanzmaschine			
	8)Lösungsmethodik für nichtlineare Differentialgleichung			
	an elektr. Maschinen			
	9)Dynamik des gekoppelten elektrisch-mechanischen			
	Systems			
	10)Transiente Stabilität			

Studien-	Klausur(120 min.)
Prüfungsleistungen:	
Medienformen:	Tafel und PPT
Literatur:	Fischer, R.
	Elektrische Maschinen, 16. Auflage, Hanser
	Verlag, 2013
	Heier, S.
	Windkraftanlagen, 4. Auflage, Springer-Vieweg,
	2005
	Binder, R.
	Elektrische Maschinen und Antriebe
	Springer-Verlag Heidelberg, 2012
	Giersch, HU., Harthus, H.
	Elektrische Maschinen – Prüfen, Normung,
	Leistungselektronik, 6. Auflage, Europa-
	Lehrmittel, 2014
	Schröder, D.
	Elektrische Antriebe – Regelung von
	Antriebsystemen
	4. Auflage, Springer-Vieweg, 2015
	Laborskripte Fb 1, HS-Flensburg
	Labor für Elektrische Maschinen und Antriebe

Module des Wintersemesters

Modulbezeichnu	ıng: In	formationsted	chnik/Datenb	anken	
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des		Dauer
Info	N	lathematik,	Angebots	6	1 Semester
	Simu	lation, Numerik	Sommersemester		
Studiensemester	١	Norkload	Selbststudium		Präsenzstud.
1./2. Semester		150 h	90 h		60 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	20	Studierende	4 SWS		5
Formale	·	Inhalt	Inhaltliche		Verbindlichkeit
Teilnahmevoraussetzungen Teil		Teilnahmevora	Teilnahmevoraussetzungen		flichtveranstaltung
keine		Grundkenr Program	_		

Programmierarbeiten, Projekt

Modulverantwortliche/r

Prof. Dr. rer.-nat. G. Hofmann, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr. rer.-nat. G. Hofmann, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

Die Studierenden sind in der Lage,

- Daten zu strukturieren und
- in einem ER-Modell darzustellen.
- Die Datenbank kann dann erstellt werden und
- durch eine PHP-Applikation dem Anwender zugänglich gemacht werden.

Inhalte

- Das relationale Datenmodell, ER-Modell
- SQL
- HTML
- PHP
- JavaScript

Lehrformen

seminaristischer Unterricht, Projektarbeiten, Gruppenarbeiten, Planspiele, etc.

Medienverwendung

Literatur

Modulbezeichnung: Strategische Produktentwicklung						
Kürzel	Lehrve	eranstaltung/en	n Häufigkeit des		Dauer	
StraPro	Strategi	ische	Angebots	6	1 Semester	
	Produk	tentwicklung	Winterseme	ster		
Studiensemester	1	Norkload	Selbststudium		Präsenzstud.	
1. Semester		150 h	90 h		60 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	4 SWS		5	
Formale		_	Itliche		/erbindlichkeit	
Teilnahmevoraussetz	oraussetzungen Teilnahmevor		raussetzungen		ichtveranstaltung	
keine		ke	ine			

120-minütige schriftliche Prüfung oder alternative Prüfungsleistung

Modulverantwortlicher

Prof. Dr.-Ing. T. Steffen, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. T. Steffen, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können den Produktentstehungsprozess PEP auf die Entwicklung von neuen bzw. bestehenden Produkten anwenden
- Die Studierenden kennen die Inhalte des Lean Thinkings.
- Die Studierende kennen die Gestaltungsprinzipien und Methoden, die beim Lean Product Development angewendet werden

Inhalte

- Einführung in den Produktentstehungsprozess PEP nach Pahl/Beitz
- Erarbeiten von Methoden zur Erstellung und Bewertung von Anforderungslisten, Funktionsstrukturen und Lösungen
- Einführung in das Lean Thinking
- Erarbeiten der Unterschiede zwischen Produktionsprozessen und Entwicklungsprozessen in Bezug auf Lean Thinking
- Einführung in die Gestaltungsprinzipien und Methoden des Lean Developments

Lehrformen

Vorlesung und Workshops

Medienverwendung

Literatur

- Feldhusen/Grote: Pahl/Beitz Konstruktionslehre, Springer Verlag 2013
- Dombrowski: Lean Development, Springer Verlag 2015
- Preußig: Agiles Projektmanagement, Haufe. 2015

Modulbezeichnu	ng: Pr	ojekt 2		
Kürzel Pro 2		veranstaltung nesterprojekt	Häufigkeit d Angebots Wintersemes	1 Semester
Studiensemester	١	Vorkload	Selbststudi	um Präsenzstud.
1./2. Semester	300 h		270 h	30 h
Sprache	Gr	uppengröße	Umfang	Kreditpunkte
deutsch	< 2	Studierende	2 SWS	10
Formale Teilnahmevoraussetzungen keine		Inhalt Teilnahmevora kei	aussetzungen	Verbindlichkeit Pflichtveranstaltung

Erfolgreiches Bearbeiten eines abgegrenzten Fallbeispiels, Präsentation der Arbeitsergebnisse

Modulverantwortlicher

Prof. Dr.-Ing. Thies Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Lehrende der Hochschule Flensburg

Lernergebnisse (learning outcomes) / Kompetenzen

- Die Studierenden beherrschen Methoden der Ingenieurwissenschaften, des Projektmanagements und der Präsentation von ingenieurtypischen Projekten.
- Die Studierenden können ein komplexes Problem in Einzelprobleme auflösen (Anforderungsliste, Lastenheft, Pflichtenheft).
- Diese Einzelprobleme auch unter einem Systemaspekt lösen (Kreativtechniken),
- die Einzellösungen zu ingenieurwissenschaftlichen Systemen zusammenfassen und
- diese in einem entsprechenden Projekt umsetzen.
- Sie können ein solches Projekt ergebnisorientiert planen (Projektplan),
- eine Projektgruppe organisieren und
- den Projektplan organisiert durchführen (Projektverfolgung).
- Sie können die Ergebnisse aufbereiten, einen Report darüber schreiben und in einer Präsentation darstellen.
- Intellektuelle und soziale Kompetenzen werden durch die Vermittlung von abstraktem, analytischem über den Einzelfall hinausgehendem und vernetztem Denken herausgebildet.
- Es wird die Fähigkeit geschult, sich schnell methodisch und systematisch in Neues einzuarbeiten. Dadurch werden Selbständigkeit, Teamfähigkeit, vernetztes Denken, Kreativität, Offenheit, Kommunikationsfähigkeit und Organisationsvermögen entwickelt und gefestigt.

Inhalte

Das Projektmodul umfasst sowohl die Teilnahme an Präsenzveranstaltungen, als auch die Anfertigung einer Semesterarbeit und deren Präsentation.

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform. Bei in der Hochschule durchgeführten Projekte soll eine Mindestgruppengröße von 3 Personen sichergestellt sein.

Im WS 2019/20 werden voraussichtlich von den Wahlpflichtfächern angeboten:

- + Systeme der Energiespeichertechnik
- + Systeme der Elektromobilität
- + Einführung in die Numerische Prozeßsimulation (CAPE)
- + Netzwerktechnik
- + Schweißtechnik
- + Maintenance
- + Bioraffinerie Systeme
- + Fertigungsgerechte Konstruktion
- + Speiseöltechnologie
- + Fließschemata in Prozeßtechnologie
- + GreenEngineering
- + Membrantechnologie

Ob diese Kurse tatsächlich zustande kommen, hängt davon ab, ob die Mindestteilnehmerzahl überschritten wird. Einige der fehlenden Kurse werden evtl. im SS 2020 angeboten werden.

Modulbezeichnung: Systeme der Elektromobilität						
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des		Dauer	
EmoB	Systeme der Elektromobilität		Angebots Sommersemester		1 Semester	
Studiensemester	Workload		Selbststudium		Präsenzstud.	
1./2. Semester		150 h	90 h		60 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	4 SWS		5	
Formale		Inhal	tliche		Verbindlichkeit	
Teilnahmevoraussetz	ungen	Teilnahmevor	aussetzungen	Wah	lpflichtveranstaltung	
keine		ke	eine			

Bestehen einer Klausur 120 min

Modulverantwortliche/r

Prof. Dr.-Ing. Jo. Berg, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Jo. Berg, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcomes) / Kompetenzen

- Die Studierenden werden in die Lage versetzt, an elektrischen Maschinen sinnvolle Versuche durchzuführen um spezielle Fragen nach deren Verhalten zu klären.
- Des Weiteren lernen sie, wie elektrische Maschinen entwickelt, gebaut und ihre Standarddaten gemessen werden.

Inhalte

Maschinenexperimente für:

- D.C. Maschinen
- Einphasen Transformatoren
- Asynchronmaschinen

Lehrformen

Laborversuche als betreute Gruppenarbeit, Vorlesung in seminaristischer Form

Medienverwendung

Tafel, Laborversuche

Literatur

Electric Machinery by A. E. Fitzgerald, Charles Kingsley Jr.Electric Motors and Drives: Fundamentals, Typ...by Austin Hughes, Test descriptions

Modulbezeichnung: Systeme der Energiespeichertechnik						
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des		Dauer	
Esp	System	e der Angebots		6	1 Semester	
·	Energie	nergiespeichertechnik Winte		ster		
Studiensemester	١	Norkload	Selbststudium		Präsenzstud.	
1./2. Semester		150 h	90 h		60 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	4 SWS		5	
Formale	Formale Inhal		Itliche		Verbindlichkeit	
Teilnahmevoraussetz	Teilnahmevoraussetzungen Teilnahmevora		aussetzungen	Wal	nlpflichtveranstaltung	
keine		ke	keine			

schriftliche Prüfung

Modulverantwortliche/r

Prof. Dr.-Ing. habil. Claudia Werner, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. habil. Claudia Werner, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden erkennen das Potential und die physikalisch werkstofftechnischen Grenzen der behandelten Systeme und
- können deren Möglichkeiten im Rahmen unterschiedlicher Anwendungen einschätzen.
- Sie sind in der Lage die Speichersysteme und -technik auszuwählen, anzuwenden und zu bewerten.

Inhalte

- Grundlagen natürlicher Energiespeicher und technischer Energiespeichersysteme
- Stationäre Großspeicher zur Netzstabilisierung
- Transportable Speichersysteme für mobile Anwendungen

Lehrformen

Vorlesung auf der Basis von Tafelarbeit, unterstützt durch graphische Darstellungen

Literatur

Aktuelle Veröffentlichungen

Modulbezeichnung: Bioraffinerie Systeme WS2019						
Kürzel	Lehr	veranstaltung Häufigkeit des			Dauer	
BRS	Bioraf	finerie Systeme	Angebots	3	1 Semester	
			Winterseme	ster		
Studiensemester	\	Vorkload	Selbststudium		Präsenzstud.	
1. Sem. Master SystT	75 h		45 h		30 h	
1. Sem Master Applied Bio Food Engineering						
Sprache	Grı	ıppengröße	Umfang		Kreditpunkte	
deutsch	25 Studierende		2 SWS		2,5 // 3 (je nach Studiengangraster)	
Formale	l	_	tliche	<u> </u>	Verbindlichkeit	
Teilnahmevoraussetzu	ıngen	Teilnahmevor	aussetzungen	Wah	lpflichtveranstaltung	
keine		ke	eine			

Schriftliche Prüfung am Ende des Semesters; bei Masterstudierenden zusätzlich ein Referat

Modulverantwortliche/r

Prof. Dr.-Ing. H. Uellendahl, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. H. Uellendahl, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden haben Kenntnisse über die Grundprinzipien und verschiedenen Konzepte von Bioraffinerien zur Umwandlung von Biomasse in Energie, Treibstoffe und Chemikalien.
- Die Studierenden können Parallelen und Unterschiede zu herkömmlichen Erdölraffinerien aufzeigen.
- Die Studierenden kennen die Grundlagen der verschiedenen Teilprozesse einer Bioraffinerie und wissen wie diese den zu verwendenden Biomasseressourcen einerseits und den gewünschten Produkten andererseits angepasst und optimiert werden können.
- Die Studierenden kennen die Zusammensetzung verschiedener Biomasseressourcen und welche Prozesse zur Umsetzung dieser in einer Bioraffinerie sich daraus ergeben.
- Die Studierenden können Massen- und Energiebilanzen für die Umsetzung der Biomasse in der Sequenz der verschiedenen Prozesse einer Bioraffinerie erstellen.
- Die Studierenden können Fallbeispiele zu Bioraffinerie Großanlagen präsentieren.

Inhalte

- Gesamtkonzepte und Teilprozesse von Bioraffinerien zur physikalischen, thermochemischen und biologischen Umwandlung von Biomasse
- Darstellung verschiedener Bioraffineriekonzepte und deren Stärken und Schwächen anhand von Beispielen 1. und 2. Generation Bioethanol Bioraffinerie, Biogastechnologie etc.

Lehrformen

Vorlesung, Präsentation und Diskussion ausgewählter Fallbeispiele.

Medienverwendung

Tafel, Präsentationen, Seminaristische Diskussion von Fallbeispielen

Literatur

Wird in der Veranstaltung bekannt gegeben.

Modulbezeichnung: Netzwerktechnik							
Kürzel NWT	Lehrveranstaltung/en Netzwerktechnik		Häufigkeit des Angebots Wintersemester		Dauer 1 Semester		
Studiensemester	Workload		Selbststudium		Präsenzstund.		
1. Semester	150 h		90 h		60 h		
Sprache	Gruppengröße		Umfang		Kreditpunkte		
deutsch	18	Studierende	4 SWS		5		
Formale Teilnahmevoraussetz keine	ungen	Inhaltliche Teilnahmevoraussetzungen Grundkenntnisse EDV/ Programmierung		Wal	Verbindlichkeit hlpflichtveranstaltung		

Voraussetzungen für die Vergabe von Kreditpunkten

120-minütige schriftliche Prüfung oder alternative Prüfungsleistung

Modulverantwortlicher

Prof. Dr.-Ing. D. Jeschke, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. D. Jeschke, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

Die Teilnehmer sind der Veranstaltung sind in der Lage, Aufbau und Funktion von Netzwerken nachzuvollziehen und diese sinnvoll (z.B. durch geeignete Vergabe von Adressen) zu verwalten. Sie kennen die wesentlichen Merkmale gängiger Protokolle und sind in der Lage, die Headerinformationen von Netzwerkdaten sinnvoll auszuwerten. Sie verstehen die die Aufgabe eines Betriebssystems bei der Verwaltung von Netzwerkschnittstellen und können für ein gegebenes Protokoll eine Netzwerkschnittstelle implementieren. Die Teilnehmer verstehen die Funktion einer Firewall und können diese konfigurieren.

Inhalte

- OSI-Modell am Beispiel des Protokollstapels Ethernet, IP, TCP/UDP, IEC 62056-21
- Datenanalyse mit Wireshark
- Programmierung einer Netzwerkschnittstelle in C++ für Windows
- IT-Sicherheit und Firewalls

Lehrformen

Workshop

Medienverwendung

Literatur

•

Modulbezeichnung: Einführung in die Numerische Prozesssimulation (CAPE)							
Kürzel	Lehrve	eranstaltung/en Häufigkeit de			Dauer		
CAPE	Eint	führung in die	Angebots	5	1 Semester		
	Numerische Prozesssimulation		Wintersemester				
Studiensemester	Workload		Selbststudium		Präsenzstudium		
1./2. Semester	150 h		90 h		60 h		
Sprache	Gru	uppengröße	Umfang		Kreditpunkte		
Deutsch/Englisch	24	Studierende	4 SWS		5		
Formale		Inhal	tliche		Verbindlichkeit		
Teilnahmevoraussetz	ungen	Teilnahmevor	aussetzungen	Wal	nlpflichtveranstaltung		
keine		Thermischer Ve und ggf. C	antnisse in erfahrenstechnik hemischer nstechnik				

Erfolgreiche Teilnahme an der Klausur, regelmäßige Teilnahme am PC-Labor

Modulverantwortliche/r

Prof. Dr.-Ing. Claus Werninger, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Claus Werninger, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Dipl.-Ing. Jens Jungclaus, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden sind in der Lage das Basiskonzept eines chemischen oder thermischen Prozesses zu erstellen. Sie berücksichtigen dabei heuristische oder rigorose Methoden und bilanzieren ihren Konzeptentwurf in der Synthesephase mit Hilfe der Erhaltungsprinzipien.
- Die Studierenden können den Konzeptentwurf in der Prozesssimulationssoftware ASPEN+ abbilden und sind in der Lage geeignete Stoffgesetze auszuwählen.
- Die Studierenden erzielen Lösungen für ihre Entwürfe, können die Lösungen bewerten und mit Hilfe von Analysewerkzeugen die Lösungsgüte evaluieren.

Inhalte

- Lösungsmethoden zur Prozesssynthese:
 - Heuristische Ansätze und rigorose Ansätze
- Einführung in die stationäre Prozesssimulation:
 - Gemischthermodynamik
 - Basisausrüstung Prozessanlagen: Pumpen, Kompressoren, Wärmeübertrager, Ventile
 - Chemische Reaktoren in ASPEN+
 - Thermische Unit Operations und deren Modellierung in ASPEN+

- Prozessberechnung und Prozessanalyse
 - Analysewerkzeuge in ASPEN+

Lehrformen

Vorlesung und PC-Labor zur individuellen Einübung der Simulation mit der Software ANSYS Fluent

Medienverwendung

Einsatz der Prozesssimulationssoftware ASPEN+

Literatur

• Blass, E. Entwicklung verfahrenstechnischer Prozesse

Springer

• Smith, R. Chemical Process Design and Integration

John Wiley & Sons

• Turton, Baille, Whiting, Shaelwitz:

Analysis, Synthesis, and Design of Chemical Processes

Prentice Hall

Modulbezeichnung: Schweißtechnik						
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des Angebots		Dauer	
ST	So	chweißtechnik			1 Semester	
		Wintersemeste		ster		
Studiensemester	1	Workload	Selbststudium		Präsenzstud.	
1./2. Semester		150 h	90 h		60 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	4 SWS		5	
Formale Teilnahmevoraussetzungen Teilnah		Inhal	Inhaltliche		Verbindlichkeit	
		Teilnahmevor	aussetzungen	Wał	Wahlpflichtveranstaltung	

Bestehen einer zweistündigen Klausur

keine

Modulverantwortliche/r

Prof. Dr.-Ing. M. Dahms, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

keine

Hauptamtlich Lehrende

Prof. Dr.-Ing. M. Dahms, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können für eine Schweißaufgabe das angemessene Schweißverfahren auswählen und eine Schweißverfahrensprüfung durchzuführen.
- Sie sind in der Lage, die Schweißeigung eines gegebenen unlegierten Stahles zu bewerten und bei begrenzt schweißgeeigneten Stählen die Maßnahmen zu veranlassen, die ein positives Schweißergebnis erwarten lassen.
- Sie sind in der Lage, Schweißkonstruktionen aus unlegiertem Stahl angemessen zu gestalten und in der Zeichnung darzustellen.
- Bei einem qualifizierten Bestehen der Klausur sind die Studierenden berechtigt und in der Lage, in den Teil III des internationalen Schweißfachingenieurlehrganges einzusteigen.

Inhalte

- Schweißverfahren
- Schweißen des unlegierten Stahls
- Schweißkonstruktion
- Die Inhalte orientieren sich am Katalog des internationalen Schweißfachingenieurlehrganges, Teil I.

Lehrformen

Vorlesung in seminaristischer Lehrform

Medienverwendung

Literatur

Skript des DVS zum Schweißfachingenieurlehrgang, Teil I

Modulbezeichnung: maintenance						
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des		Dauer	
ST	m	aintenance	Angebots	5	1 Semester	
			Wintersemester			
Studiensemester	'	Norkload	Selbststudium		Präsenzstud.	
1./2. Semester		150 h	90 h		60 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	4 SWS		5	
Formale	<u> </u>	Inhal	Inhaltliche		Verbindlichkeit	
Teilnahmevoraussetz	ahmevoraussetzungen Teilnahmevo		aussetzungen	Wah	lpflichtveranstaltung	
keine		ke	ine			

Bestehen einer zweistündigen Klausur

Modulverantwortliche/r

Prof. Dr.-Ing. J. Berg, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. J. Berg, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

Die Grundlagen der Maintenance werden vermittelt und der Zusammenhang zwischen Produktion und der Datenanalyse und Auswertung erarbeitet. Es wird den Studierenden vermittelt, wie aus der Historie ein W/I Plan erstellt, die Organisationsformen aussehen und das betriebswirtschaftliche Optimum erreicht wird. Mittels umfangreicher statistischer Verfahren wird die Qualität der Maschinen und Prozesse ermittel.

Inhalte

- 1. Motivation, Ziele und Methoden der Diagnose
- 2. Instandhaltungsmanagement, Schnellscheck
- 3. Anlagenstrukturierung, Kapazitäts- u. Terminplanung
- 4. Eigen- und Fremdleistung, wirtschaftl. Referenzwerte
- 5. Methoden zur Reduzierung der Energie- und Instandhaltungskosten
- 6. Grundlagen der techn. Statistik und Wahrscheinlichkeitsverteilungen
- 7. Qualitätsregelkartentechnik und Auswahl von Verteilungsmodellen
- 8. Qualitätsfähigkeitskenngrößen
- 9. Regressions- und Korrelationsanalyse

Lehrformen

Medienverwendung Tafel und Ppt

Literatur

Bünning/Trenkler: Nichtparametrische statistische Methd.

Alt: Nichtlineare Optimierung

Linß: Statistiktrainning im Qualitätsmanagement

Modulbezeichnu	ng: Sp	eiseöltechn	ologie		
Kürzel	Lehr	veranstaltung	Häufigkeit o		
SÖT	Speis	eöltechnologie	Angebots	1 Semester	
			Wintersemes	ster	
Studiensemester	Workload		Selbststudi	ım Präsenzstud.	
5. Sem. BTVT/MB;	75 h		45 h	30 h	
1. Sem. Master SystT;					
2. Sem. Master BPE					
Sprache	Gruppengröße		Umfang	Kreditpunkte	
deutsch	25 Studierende		2 SWS	2,5 // 3 (je nach	
				Studiengangraster)	
Formale		Inhaltliche		Verbindlichkeit	
Teilnahmevoraussetzungen Teilnahmevoraussetzungen		Teilnahmevor	raussetzungen	Wahlpflichtveranstaltung	
keine	kei		ine	-	

Schriftliche Prüfung am Ende des Semesters; bei Masterstudierenden zusätzlich ein Referat

Modulverantwortliche/r

Prof. Dr.-Ing. T. Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. T. Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden sind mit den typischen Herausforderungen eines kontinuierlichen Produktionsbetriebes vertraut (Qualitätswesen, Sicherheit, Produktivität, Logistik,...).
- Die Studierenden kennen unterschiedliche Lösungsansätze hierzu und sind in der Lage, einen geeigneten Ansatz auszuwählen.
- Die Studierenden kennen den Speiseölproduktionsprozess vom Rapskorn bis zum voll raffinieren Öl, sind mit den verfahrenstechnischen Grundlagen der einzelnen Grundoperationen vertraut und können diese Operationen aufgrund der Grundlagenkenntnis optimieren.
- Die Studierenden erkennen die Bedeutung/das Potential der Wärme- und Stoffübertragung
- Die Studierenden sind in der Lage, das Erlernte auf jeden anderen kontinuierlichen Produktionsprozess zu übertragen (Papier, Chemikalien,...).

Inhalte

- Aspekte des kontinuierliche Produktionsprozesses (Sicherheit, Umweltschutz, Qualitätssicherung, Logistik, Instandhaltung, Kosten, Energiemanagement, Produktivität,...)
- Erläuterung dieser Aspekte am Beispiel des Speiseölprozesses (chemischer Hintergrund; gesamter Prozessablauf, einzelne Grundoperationen, Lagerung).
- Sondergebiete der Speiseölverarbeitung (Biodiesel/Margarine)

Lehrformen

Vorlesung, Diskussion ausgewählter Fallbeispiele.

Medienverwendung

Tafel, Präsentationen, Filme, Seminaristische Diskussion von Fallbeispielen

Literatur

Wird in der Veranstaltung bekannt gegeben.

Modulbezeichnu	ıng: Fe	ertigungsgere	echte Konstru	uktion
Kürzel	Lehrve	eranstaltung/en	Häufigkeit o	
NWT	Netzwe	rktechnik	Angebots	1 Semester
			Winterseme	ester
Studiensemester	'	Norkload	Selbststudi	ium Präsenzstud.
1. Semester		225 h	135 h	90 h
Sprache	Gr	uppengröße	Umfang	Kreditpunkte
deutsch	25	Studierende	6 SWS	5
Ганнала	•	امطما	4liaha	Vaulainallialdesit

Formale	Inhaltliche	Verbindlichkeit
Teilnahmevoraussetzungen keine	Teilnahmevoraussetzungen keine	Pflichtveranstaltung
Keme	Keme	

120-minütige schriftliche Prüfung oder alternative Prüfungsleistung

Modulverantwortlicher

Prof. Dr.-Ing. Kluge, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. Kluge, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

•

Inhalte

- Fertigungslehre => Urformen = hier Gießen von Metallen
 - Werkstoffe
 - Gefüge
 - Erstarrung
 - Gussfehler
 - verschieden Gießverfahren
 - Schwerpunkt Druckguss
 - Maschinen
 - Anlagen
 - Werkzeuge
 - Aufbau
 - Formteilung
 - Auswerfer
 -
 - Analyse vorhandener Teile
 - (Nach)Konstruktion (CAD) eines vorhandenen Teiles
 - Fertigungsgerechte Gesichtspunkte

Lehrformen

Vorlesung und Workshops

Medienverwendung

Literatur

•

Kürzel	Lehrve	eranstaltung/en	Häufigkeit d	es	Dauer	
GE	GreenE	ngineering	Angebots		1 Semester	
			Wintersemes	ter		
Studiensemester	\	Vorkload	Selbststudi	ım Pı	äsenzstund.	
1. Semester		150 h	90 h		60 h	
Sprache	Gr	uppengröße	Umfang	К	reditpunkte	
deutsch	25	Studierende	4 SWS		5	
Formale		Inhaltliche		Verbindlichkeit		
Teilnahmevoraussetzungen		Teilnahmevoraussetzungen		Wahlpflichtveranstaltung		
keine		BSc oder BEng		_		

Präsentation (Voraussetzung zur Bewertung des Gruppenberichts) und schriftlicher Gruppenbericht (4500 bis 5000 Wörter pro Studierendem)

Modulverantwortlicher

Prof. Dr. J. Born, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr. J. Born, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Dr. P. Heßbrüggen,

Lernergebnisse (learning outcome) / Kompetenzen

- Fähigkeit zur Anwendung wissenschaftlicher Methoden und Ontologien des nachhaltigen Ingenieurwesens und Management Engineering zur Lösung von verfahrenstechnischen Problemen
- Fähigkeit, Prozesse Schritt für Schritt zu entwerfen
- Fähigkeit, zielgerichtet und strukturiert komplexe Projekte mit Partnern aus der Praxis umzusetzen
- Fähigkeit zur Lösung von Problemen, die Nachhaltigkeitskriterien erfüllen

Inhalte

Anwendung von Methoden und Ontologien des nachhaltigen Projektdesigns auf reale Projekte mit externen Partnern

Inhaltlich:

- Integration erneuerbarer Energien, Abfall- und Abwasserbehandlung in entsprechende Prozessketten
- Integration erneuerbarer Energiesysteme
- Projektarbeit: Lösung von Problemen der realen Welt
- Integration von Prozessketten
- Feedback und Diskussion ausgewählter Ansätze, Lösung auftretender Probleme in Workshops

Methodisch:

- Identifizieren Sie Stakeholder-Nachfrage mit nachhaltigen Design-Thinking-Methoden.
- Führen Sie eine nachhaltige Framing-Analyse durch und identifizieren Sie Referenzszenarien.
- Entwerfen Sie innovative Ideen und konzeptionelle Prototypen
- Entwurf nachhaltiger Machbarkeitsmodelle
- Unterschiedliche Aufgaben bei der Integration von Prozessketten, die Kriterien der Energieund Ressourceneffizienz erfüllen
- Integration erneuerbarer Energien, Abfall- und Abwasserbehandlung in entsprechende Prozessketten
- Integration erneuerbarer Energiesysteme
- Projektarbeit: Lösung von Problemen der realen Welt
- Integration von Prozessketten
- Feedback und Diskussion ausgewählter Ansätze, Lösung auftretender Probleme in Workshops

Lehrformen

Projekt, Workshop

Medienverwendung: Tafel, elektronische Präsentationstechniken, Internetauftritt, themenadaptierte Medienformen

Literatur

Themenadaptierte Literatur, Monographien und wissenschaftliche Veröffentlichungen

Übersichtsliteratur:

- > Allan, Shonnard: Green Engineering
- > Graedel, Allenby: Industrial Ecology and Sustainable Engineering
- ➤ Heßbrüggen, Peter: Sustainable Innovation Design