Module Handbook Master "Wind Engineering"

Last updated Oktober 2017

Table of content	
Table of content	2
Module overview	3
Electives	4
Module number [1]: Scientific and Technical Writing	5
Module number [2]: Global Wind industry and environmental conditions	6
Module number [3]: Wind farm project management and GIS	8
Module number [4]: Advanced Engineering Mathematics	10
Module number [5]: Mechanical Engineering for Electrical Engineers	11
Module number [6]: Electrical Engineering for Mechanical Engineers	13
Module number [7]: German for foreign students	14
Module number [8]: English for engineers	16
Module number [9]: Energy Economics	17
Module number [10]: Introduction to Windturbine Aerodynamics	19
Module number [11]: Certification, load assumptions and simulations	20
Module number [12]: Control and automation of wind power plants	22
Module number [13]: Tower and rotor structures	24
Module number [14]: Mechanical drive train	25
Module number [15]: Electrical Engineering for wind turbines	27
Module number [16]: FE & Fatique Analysis	28
Module number [17]: Machinery components & rotor blades	30
Module number [18]: Electrical machines, power electronics and control	32
Module number [19]: Grid Integration	33
Module number [20]: Tower and sub-structure design and dimensioning	34
Module number [21]: Project: Development of a wind turbine	36
Module number [22]: Advanced Wind Farm Planning and Turbine Measurements	38
Module number [23]: Offshore wind energy: Operation and Maintenance	40
Module number [24]: Computational Fluid Dynamics	42
Module number [25]: Modelling & Simulation of Wind Turbines	43
Module number [26]: Wind Engineering Challenge Project	45
Module number [27]: Master thesis	47

Module overview

1. Semester (WiSe)	2. Semester (SoSe)	3. Semester (WiSe)
Scientific and Technical Writing	Introduction to wind turbine aerodynamics	Mechanical engineering: - FE & Fatique Analysis - Machinery components & rotor blades
Global Wind Industry and environmental conditions	Certification, load assumptions and simulations	 Project: Development of a wind turbine Focus: Mechanical engineering 2 Electives
Wind farm project management and GIS	Control and automation of wind power plants	Electrical engineering: - Electrical machines, power electronics and control - Grid integration
Advanced Engineering Mathematics	Tower and rotor structures	 Project: Development of a wind turbine Focus: Electrical engineering 2 Electives
Elective A	Mechanical drive train	Civil engineering: - FE & Fatique Analysis - Tower and sub-structure design and dimensioning
Elective B	Electrical engineering for wind turbines	 Project: Development of a wind turbine Focus: Electrical engineering 2 Electives
4. Semester (SoSe)		
	Thesis	

Electives

1. Semester (WiSe)

Mechanical engineering for electrical engineers

Electrical engineering for mechanical engineers

German for foreign students

English for engineers

Energy economics

3. Semester (WiSe)

Advanced Wind Farm Planning and Turbine Measurements

Offshore Wind Energy: Operation and Maintenance

Computational Fluid Dynamics

Modelling & Simulation of Wind Turbines

Wind Energy Challenge Project

Module number [1]: Scientific and Technical Writing

Course	Master of Science – Wind Engineering
Module name	Scientific and Technical Writing
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Peter Missfeld, University of applied sciences Flensburg
Lecturer/s	Peter Missfeld, University of applied sciences Flensburg
Status within the curriculum	Master Course Wind Engineering
	mandatory course
Language	English
Type of course and hours	2 h lectures, 2 h writing laboratory
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	English language skills according to admission requirements
examination regulations	
Aims of the module,	• The students learn how to write academic texts using technical
acquired skills	vocabulary and are able to structure texts
	They are able to define research questions
	• After finishing the module the students are able to quote
	sources correctly
	 They gain the knowledge of drafting, revising and editing academic texts
Subjects covered	Formats for scientific and technical writing
Subjects covered	 Arguing
	 Arguing Structuring texts
	 Introduction, summary, and abstracts for own written texts
	 Various citation styles
	 Presentation of results
Form of examination	Written report
Media used	Powerpoint presentation, Blackboard
Recommended literature	Alred, G. J., Brusaw, C. T., Oliu W. E.: Handbook of
	Technical Writing, Bedford/St. Martin's, 2009
	 Glasman-Deal, H.: Science Research Writing for non-native
	speakers of English, Imperial College London, UK, 2010
	 Sheffield, N.: Scientific Writing: Clarity, Conciseness, and
	Cohesion, Institute for Genome Sciences and Policy, Duke
	University, 2011
	Rogers, S.M.: Mastering Scientific and Medical Writing-A Self-
	help Guide. Springer, 2007

Module number [2]: Global Wind industry and environmental conditions

Course	Master of Science – Wind Engineering
Module name	Global Wind industry and environmental conditions
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Dr. rer. nat. Hermann van Radecke, University of applied sciences
	Flensburg
	Prof. h.c. Dr. Klaus Rave, University of applied sciences Flensburg
Lecturer/s	Dr. rer. nat. Hermann van Radecke, University of applied sciences
	Flensburg
	Prof. h.c. Dr. Klaus Rave, University of applied sciences Flensburg
	et. al.
Status within the curriculum	Master Course Wind Engineering
	mandatory course
Language	English
Type of course and hours	4 h lectures with exercises
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	None
examination regulations	
Aims of the module,	This course gives an overview of global wind energy networks
acquired skills	and standard energy and environmental calculations of wind
	parks.
	 It provides an insight into the actual state of the global wind
	energy market with global institutions, organisations, networks
	and associations. Students will learn about the different
	regulatory regimes and their effects on the wind industry. The
	influence of policy making and the implementation of policies
	are outlined.
	• It deals with the financing of wind farms, the bankability of
	projects and the strategies for project development.
	• An analysis of the relationship between R&D, legislation,
	different climates and onshore and offshore installations will
	provide students with valuable experience for future careers.
	• The students learn the fundamentals of energy meteorology
	and through study of the impact of wind energy plants on the
	environment gain knowledge of types and levels of emissions.
	• They will understand and be able to calculate the physical,
	technical and legal aspects of wind energy parks with regard to
	their energy production and emissions within the frame of site
	assessment.
Subjects covered	Overview of the global wind industry
	The onshore and offshore markets, general trends
	Energy policies and regulatory frameworks
	Global drivers of the markets

	 Finance, bankability, project developments
	 Energy meteorology, wind systems, boundary layers, profile,
	turbulence, WAsP, mesoscale models, wind atlas, technical
	directives, short and long-term measurement
	 Emissions and influences on the environment, noise
	measurement and calculation, shadow, turbulence, optical
	impact, IEC standards
	 Calculation of energy and emissions (Program modules
	Windpro, Windfarmer, WAsP, et al.)
Form of examination	Written examination (120 min)
Media used	black board, power point presentation,
Recommended literature	• Manwell, J. F., McGowan, J. G., Rogers, A. L.: Wind Energy
	Explained. Wiley, Chichester, 2009
	• Troen, I. and E. L. Petersen: European Wind Atlas. Risø National
	Laboratory, Roskilde, 1989
	CEwind, Hrsg.: Einführung in die Windenergietechnik. Carl
	Hanser Verlag, München, 2012
	• CEwind, ed.: Understanding Wind Energy Technology. Wiley,
	2014 i.p.
	IEC 61400 International Electrotechnical Commission
	Technische Richtlinien (FGW-Richtlinien)
	 Manuals programs WindPRO and Windfarmer

Module number [3]: Wind farm project management and GIS

Course	Master of Science – Wind Engineering
Module name	Wind farm project management and GIS
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	Wind energy project management and planning
Semester	Winter semester
Person in charge of module	Prof. Dr. Bernd Möller, Europa-Universität Flensburg
Lecturer/s	Prof. Dr. Bernd Möller, Europa-Universität Flensburg
Status within the curriculum	Master Course Wind Engineering
Status within the currentium	Mandatory course
Language	English
Type of course and hours	4 h lectures
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Aims of the module,	Acquisition of general knowledge about all phases of developing
acquired skills	onshore wind energy projects, from the first idea of realisation,
	acquisition, business model, choice of location, infrastructural
	planning, approval planning and financing, to site management
	during building phase.
	The students learn about political, social, technical and legal
	aspects of wind energy planning and management
	• The students gain practical skills of using geographical information
	systems for wind energy project management and planning.
Subjects covered	Wind energy planning and policy review
	Social acceptance and environmental aspects of wind energy
	Legal characteristics of planning, implementation and operation
	Basic types of projects (greenfield, compression, repowering)
	Identification of suitable areas and preliminary location analysis
	Assessing the local wind potential
	Financial analysis and feasibility studies
	 Budget planning and calculation of profitability
	Urban and rural land-use planning
	Seeking approval and preliminary planning
	Site management
	• Introduction to the use of GIS software for engineers and planners
	Acquisition and application of geospatial data and information
Form of examination	Lab exercise portfolio
Media used	white board, power point presentation, beamer, Lab with ArcGIS and
	relevant geodata.
Recommended literature	 Erich Hau: Wind Turbines – Fundamentals, Technologies,
	Applications, Economics. Springer, 2013 (German or English
	edition)

•	De Smith, Longley and Goodchild: Geospatial Analysis – A
	Comprehensive Guide. Available online:
	http://spatialanalysisonline.com/
•	Collins and Law: Getting to know ArcGIS for Desktop. Third edition. ESRI Press, 2013.
•	Booth and Mitchell: Getting started with ArcGIS. Various versions, ESRI Press, 1999-2011.
•	GIS for Renewable Energy. GIS Best Practices series, ESRI 2010.
•	Tore Wizelius: Wind Power Project Management. Gotland
	University, 2006.
•	Selected scientific papers made available by the lecturer.

Module number [4]: Advanced Engineering Mathematics

Course	Master of Science – Wind Engineering
Module name	Advanced Engineering Mathematics
Abbreviation (if applicable)	AdvMath
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. Dr. Alois Peter Schaffarczyk, University of applied sciences Kiel
Lecturer/s	Dr. Falk Scharnberg, University of applied sciences Flensburg
	Additional lecturers
Status within the curriculum	Master Course Wind Engineering
	mandatory course
Language	English
Type of course and hours per week	4 h lectures
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Sound Knowledge of undergraduate Mathematic
examination regulations	
Aims of the module,	The students will be introduced into the classical methods of
acquired skills	advanced engineering calculus.
	Besides learning classical methods of advanced engineering
	calculus the students will also be able to apply the methods to
	fluid mechanics
Subjects covered	Advanced topics of linear algebra
	Space Curves
	Vector differential calculus: grad, div, curl(rot)
	Vector integral calculus: integral theorems
	Fourier Analysis
	Linear partial differential equations
Form of examination	Written examination (120 min)
Media used	black board, power point presentation, internet
Recommended literature	 E. Kreyszig, Advanced Engineering Mathematics, 10th Ed, J. Wiley and Sons, 2011, ISBN 978-0-470-64613-7
	Many others

Module number [5]: Mechanical Engineering for Electrical Engineers

Course	Master of Science – Wind Engineering
Module name	Mechanical Engineering for Electrical Engineers
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Dr. rer. nat. Hermann van Radecke, University of applied sciences
	Flensburg
Lecturer/s	Dr. rer. nat. Hermann van Radecke, University of applied sciences Flensburg
	Prof. Dr. Jacqueline Bridge, UWI
Status within the	Master Course Wind Engineering
curriculum	mandatory course
Language	English
Type of course and hours per week	4 h lectures with practical exercises
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Aims of the module,	• This course provides a bridging opportunity for students who
acquired skills	have completed a Bachelor of Science
	(Electrical/Electrotechnical Engineering).
	 Goal: To prepare students to utilize FEM-based computational
	tools.
	• First, the students are introduced to basic mechanics concepts: applied loads (forces, bending moments and torques), the resulting internal loads and the generation of stresses. Point loads, uniformly distributed loads and parabolic load distributions will be analysed.
	• This forms the foundation for the development of simple models which can be analysed using FEA techniques e.g. beams in bending must have at least 3 layers of elements: the neutral layer, one in tension, one in compression.
	• In this manner, students will be prepared for laboratory experiments with FEM software in the computer lab.
Subjects covered	• Introduction: The finite element method, types of finite elements and what they can calculate, a motivation of what the students have to learn.
	Axioms, principles and sign conventions in mechanics.
	• Statics: Resolution of forces, static equilibrium systems, calculation of support reactions.
	• Mechanics of Materials: Mechanical stress, Hooke's law, normal and shear stresses, axial loads and torsion.
	 Strength calculation: The voltage analogue;comparison of
	voltage manipulation with the determination of stresses due to

	 tension/compression, bending and torsion of prismatic straight bars. Kinematics and Kinetics of (a) point masses and (b) rigid bodies in pure rotation. Beam model, concentrated and distributed loads, shear force, bending moment and torque curves. Application to the modelling of FEM systems.
Form of examination	Written examination (120 min)
Media used	Whiteboard, PC and video projector, e-learning platform, in-class experiments, numerical simulations, lecture notes, drilled exercises
Recommended literature	 Beer, F., Johnston, E.R., deWolf, J., Mazurek, D: Mechanics of Materials. McGraw Hill, 6th edition, 2011 Gere, J.M., Goodno, B.J.: Mechanics of Materials, CEngage Learning, 8th edition, 2012 Popov, E.: Engineering Mechanics of Solids.", Prentice Hall, 2nd edition, 1998 Buchanan, G.: Mechanics of Materials. HRW.

Module number [6]: Electrical Engineering for Mechanical Engineers

Electrical Engineering for Mechanical Engineers EE for ME
EE for ME
Winter semester
Prof. DrIng. Peter Sahner, University of applied sciences Flensburg
Prof. DrIng. Peter Sahner, University of applied sciences Flensburg
Master Course Wind Engineering
mandatory course
English
4 h lectures
attendance: 60 h
private study: 90 h
5 ECTS
Bachelor degree in an engineering discipline or in physics
• The course allows the students to understand the basics of
electrical engineering
 They are able to apply the learned basics to observed electrical phenomena
Ohm's law
Kirchhoff's law
 DC circuit: current in resistor, current in inductor, voltage at capacitor
• AC circuits: calculation of steady states in AC circuits using
complex number calculation
Electric and magnetic field
Written examination (120 min)
black board, power point presentation, internet
• Ose, R., Elektrotechnik für Ingenieure, Fachbuchverlag Leipzig
 Zastrow, D.; Elektrotechnik, Vieweg, Braunschweig
• Weisgerber, W.;Elektrotechnik für Ingenieuere Bd. 1 +
2,Vieweg, Braunschweig

Module number [7]: German for foreign students

Course	Master of Science – Wind Engineering
Module name	German for foreign students
Abbreviation (if applicable)	
Subtitle (if applicable)	Basic knowledge of German language
Seminar (if applicable)	German for foreigners
Semester	Winter semester
Person in charge of module	Sybille Kähler, University of applied sciences Flensburg
Lecturer/s	Sybille Kähler, University of applied sciences Flensburg
Status within the curriculum	Master Course Wind Engineering
	elective course
Language	German
Type of course and hours	4 h lectures
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5ECTS
Preconditions according to	none
examination regulations	
Aims of the module,	• basic language skills corresponding to A1 (breakthrough or
acquired skills	beginner) or A2 (waystage or elementary) of the Common
	European Framework of Reference for Languages (CEF)
	depending on the students' preknowledge
Subjects covered	 A1: after completion of this course students can understand and use familiar everyday expressions and very basic phrases related to particular concrete situations introduce themselves and others ask and answer questions about personal details interact in a simple way
	 A2: after completion of this course students can: understand and use sentences and frequently used expressions related to areas of most immediate relevance communicate in simple and routine tasks exchange information on familiar and routine matters describe in simple terms aspects of their background, immediate environment and matters in areas of immediate need
Form of examination	Oral and written examination (90 min.)
Media used	white board, beamer, hand-outs
Recommended literature	• Krenn, W., Puchta, H.: Motive A1: Kompaktkurs DaF. Deutsch als Fremdsprache. Hueber Verlag, München.
	• Krenn, W., Puchta, H.: Motive A2: Kompaktkurs DaF. Deutsch als Fremdsprache. Hueber Verlag, München.

Module number [8]: English for engineers

Course	Master of Science – Wind Engineering
Module name	English for engineers
Abbreviation (if applicable)	ENGL
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	John Ward, University of applied sciences Flensburg
Lecturer/s	John Ward, University of applied sciences Flensburg
Status within the curriculum	Master Course Wind Engineering
	elective course
Language	English
Type of course and hours per week	4 h lectures
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Aims of the module, acquired skills	 Students have the general and specialized language foundations for the formulation of scientific and technical matters. Students are particularly aware of collocations and linguistic twists and know typical verb-noun and adjective-noun combinations which are used in technical communication
Subjects covered	 Controlled formulating Exercises for easy and accurate conversion of facts into language. Basic technical terms and their linguistic description in definitions: circuit, conductance, conductivity, efficiency, machine, magnitude, resistance, resistor, power, quantity, speed, switch, velocity,) Technical communication: complaints, damage reports, technical reports, invitation to seminar, Treatment of selected topics: disturbance and errors; velocity; modernization; naming and defining, building, design and construction; the environment; quality;
Form of examination	Written Examination (120 min)
Media used	black board, power point presentation, internet
Recommended literature	Bonamy, D.: Technical English 3. Pearson Longman, 2011 ISBN: 978-1-4082-2947-7

Module number [9]: Energy Economics

Course	Master of Science – Wind Engineering
Module name	Energy Economics
Abbreviation (if applicable)	EE
Subtitle (if applicable)	
Seminar (if applicable)	Martin
Semester	Winter semester
Person in charge of module	Prof. Dr. Olav Hohmeyer, University Flensburg
Lecturer/s	Prof. Dr. Olav Hohmeyer, University Flensburg
Status within the curriculum	Master Course Wind Engineering elective course
Language	English
Type of course and hours	4 h lectures
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to examination regulations	Admission to the M.Sc. Wind Engineering
Aims of the module,	 Students are introduced to the fundamental problems and the
acquired skills	overall contexts of the economics of energy.
	 Students will learn about the different parts of energy demand
	and the different ways of energy supply.
	 An understanding of the limitations of non-renewable energy
	sources and the difficulties of their substitution by renewable
	and often intermittent energy sources is taught.
	 The differences in the markets for grid-bound fuels are taught.
	 At the end of the seminar, each student is able to understand
	the basic relationships of the various energy markets and
	classify the contribution of different energy sources, fuels and
	technologies in the context of the total energy system and
	sustainable development.
Subjects covered	Why is energy a subject of economics?
	Energy as a resource;
	 Energy consumption and sustainable development;
	 Energy and the environment; Social costs of energy;
	 General aspects of energy markets; Prices in energy markets;
	 The coal market; The crude oil market; The natural gas market;
	The electricity market; The market for district heating;
	 Energy demand by sector; Industry, Households, Commercial
	sector, Transport,
	 Potentials, costs and limits of renewable energy sources,
	 Solar energy for electricity, Solar energy for low temperature
	heat, Wind energy, Energy from biomass, Hydropower,
	Geothermal energy, Wave and tidal energy,
	 Potentials, costs and limits of the rational use of energy by
	sector, Industry, Households, Commercial Sector, Transport,
	• Scenarios of sustainable long term energy systems

Form of examination	Presentation of the different teams and a final written report by each team
Media used	Group work and lectures with projector based presentations
Recommended literature	 Hensing, I. et.al. (1998): Energiewirtschaft. Einführung in Theorie und Politik. R. Oldenbourg Verlag, München. Banks, Ferdinand B.: Energy Economics: A Modern Introduction. Kluewer Academic Publishers, Boston BP (see most recent year): World Energy Report. Internet Bundesministerium für Wirtschaft und Arbeit (see most recent year): Energie Daten 201x. Nationale und internationale Entwicklung. (Internet BMWi)

Module number [10]: Introduction to Windturbine Aerodynamics

Course	Master of Science – Wind Engineering
Module name	Introduction to Windturbine Aerodynamics
Abbreviation (if applicable)	IntroAero
Subtitle (if applicable)	Basic knowledge of Wind Turbine Aerodynamics
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. Dr. Alois Peter Schaffarczyk, University of applied sciences Kiel
Lecturer/s	Prof. Dr. Alois Peter Schaffarczyk, University of applied sciences Kiel
Status within the curriculum	Master Course Wind Engineering
	mandatory course
Language	English
Type of course and hours per week	4 h lectures
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Sound Knowledge of undergraduate Mathematic
examination regulations	
Aims of the module,	Introduction into the classical methods of low-speed
acquired skills	aerodynamics and blade-element and momentum theory.
	Students then are able to understand and use standard BEM Codes I
Subjects covered	Integral and differential methods of fluid dynamics
	• 2D Airfoils
	• Simple Momentum-theory of Wind-Turbine, The Betz Limit
	General Momentum Theory
	Vortex-Theory of Wind-Turbine
	The Blade Element Momentum Theory
	Outlook: Computational Fluid Dynamics
Form of examination	Written Examination (120 min)
Media used	black board, power point presentation, internet
Recommended literature	• A. P. Schaffarczyk, Introduction to Wind Turbine Aerodynamics,
	Springer Verlag, 2014, ISBN 978-3-642-36408-2
	• J. Katz and A. Plotkin, Low-Speed Aerodynamics, CUP, 2001;
	ISBN, 0-521-66552-3

Course	Master of Science – Wind Engineering
Module name	Certification, load assumptions and simulations
Abbreviation (if applicable)	CERT
Subtitle (if applicable)	Basic knowledge about loads, certification, standards and guidelines of wind turbines
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. DrIng. Torsten Faber, University of applied sciences Flensburg
Lecturer/s	Prof. DrIng. Torsten Faber, University of applied sciences Flensburg Andreas Manjock, University of applied sciences Flensburg/DNV GL
Status within the	Master Course Wind Engineering
curriculum	mandatory course
Language	English
Type of course and hours	2 h lectures,
per week	2 h exercises
Student workload	attendance: 60 h private study: 90 h
Credit points	5 ECTS
Preconditions according to examination regulations	General knowledge in undergraduate mechanics, general ability to use computers, basic experience in the use of engineering software
Aims of the module, acquired skills	 Knowledge and understanding of general items about loads, standards and guidelines, type and project certification Possibility to connect this knowledge about loads and certification with practical background of the person who is

teaching this course

General Items

о

о

0

о

0 0

о

Type Certification:

- IPE

Project Certification:

•

•

•

•

•

•

Subjects covered

Introduction to load simulation for wind turbines.

can calculate different load cases.

Standards and Guidelines

Extreme and fatigue load calculations

Numbering systems Certification Report

Type Certificate:

Site Assessment

Design AssessmentQuality Management

- Prototype Testing

Statement of Compliance

Site Specific Design Assessment Manufacturing Surveillance

The students will understand and learn about the design

processes of wind turbines. They will be able to understand the importance of dynamic load simulations for wind turbines and

Module number [11]: Certification, load assumptions and simulations

	 Surveillance of Transport, Installation and Commissioning Physics and Aerodynamic Principles Guidelines and Standards Wind Turbine Design Process Load Case Definitions Turbine Design Load case simulation Extreme Loads (for Example DLC 1.3) Fatigue Loads
Form of examination	Written Examination (120 min) or Oral examination (depending on the number of students)
Media used	black board, power point presentation, projector, PC
Recommended literature	 Understanding Wind Energy Technology, Wiley, 2014 (expected) Hau, E.: Windkraftanlagen. Springer Verlag, Berlin, 2008 Manwell, J.F. et.al.: Wind Energy Explained. Wiley Ltd, Chichester, 2009 Heier, S.: Windkraftanlagen im Netzbetrieb, Vieweg u. Teubner Verlag, Wiesbaden, 2009 Gasch, R., Twele, J.: Windkraftanlagen. Vieweg u. Teubner Verlag, Wiesbaden, 2010 CEwind eG, Alois Schaffarczyk: Einführung in die Windenergietechnik, Carl Hanser Verlag, München, 2012 Guideline for the Certification of Wind Turbines On- and Offshore DIBt Regulations
	 Germanischer Lloyd, Guideline for the Certification of Wind Turbines, Edition 2003/2004 Germanischer Lloyd, Guideline for the Certification of Wind Turbines, Edition 2010 IEC 61400-1:1999 (Edition 2) IEC 61400-1:2005 (Edition 3) + Amendement 2010 DIN EN 61400-1:2006 / DS EN 61400-1:2006 (Denmark) DIBt, German Typenprüfung TAPS2000 (India)

Module number [12]: Control and automation of wind power plants

Course	Master of Science – Wind Engineering
Module name	Control and automation of wind power plants
Abbreviation (if applicable)	CSAWPP
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. DrIng. Reiner Schütt, University of applied sciences
	Westküste
Lecturer/s	Prof. DrIng. Reiner Schütt, University of applied sciences
	Westküste
Status within the curriculum	Master Course Wind Engineering
	mandatory course
Language	English
Type of course and hours	4h lectures, exercises, project work
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	SECTS
Preconditions according to	general knowledge of undergraduate mathematics, general
examination regulations	knowledge of automation and control, general knowledge of
	electrical drives and power electronics, admission to the M.Sc. in
	Wind Engineering
Aims of the module,	• The students know and understand the control systems for pitch,
acquired skills	azimuth, speed and power adjustment, the automation as well as
	the possibilities of process control, remote control and
	maintenance systems.
	• They can layout and optimize the subsystems. They can judge,
	which can be fulfilled tasks in which automation level and with
	which characteristics.
Subjects covered	• Introduction: defining control systems and automation, basics in
	wind energy conversion systems, their definition and standards
	• Feedback control systems: objectives and strategies, system
	description, application to motion control systems
	• Feedback control in wind energy conversion systems: overview,
	generator systems, yaw-, pitch-, rotor-power- and speed-control,
	dc-voltage-control and electrical power control
	Process management: open loop control, operating states,
	supervisory control, grid integration management,
	communication systems
	Summary
Form of examination	Oral or written examination (120 min)
Media used	Blackboard, overhead, beamer, internet
Recommended literature	Heier, Siegfried: Grid Integration of WECS, John Wiley & Sons,
	2008
	Hau, Erich: Wind Turbines, Springer Verlag, 2006
	Gasch, Robert: Wind Power Plants, Springer Verlag, 2006 2008
	 Gasch, Robert: Wind Power Plants, Springer Verlag, 2006 2008 CEwind: Understanding Wind Power Technology, John Wiley &

 Garcia-Sanz, Mario: Wind Energy Systems Control Engineering Design, Taylor & Francis, 2012 Schütt, Reiner: Control Systems and Automation of Wind Power Plants, lecture notes, 2013
 Leonhard, Werner: Control of Electr. Drives, Springer Verlag, 2001

Module number [13]: Tower and rotor structures

Course	Master of Science – Wind Engineering
Module name	Tower and rotor structures
Abbreviation (if applicable)	ToRo
Subtitle (if applicable)	Basic knowledge about towers and rotor blades of wind turbines
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. DrIng. Torsten Faber, University of applied sciences
	Flensburg Prof. Dr. Alois Peter Schaffarczyk, University of applied
	sciences Kiel
Lecturer/s	Prof. DrIng. Torsten Faber, University of applied sciences
	Flensburg Prof. Dr. Alois Peter Schaffarczyk, University of applied
	sciences Kiel
Status within the curriculum	Master Course Wind Engineering
	mandatory course
Language	English
Type of course and hours	2 h lectures,
per week	2 h exercises
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Aims of the module,	Knowledge and understanding of general items about
acquired skills	structures of towers and rotorblades
	 Possibility to connect this knowledge about loads and
	certification with practical background of the person who is
	teaching this course
Subjects covered	General items
	Relevant standards & materials used
	Tower and rotor types
	Safety Concept and design calculation
	Detail calculations
	Modal Analysis
Form of examination	Written examination (120 min) and Oral examination (depending
	on the number of students)
Media used	black board, power point presentation, beamer
Recommended literature	Understanding Wind Energy Technology, Wiley, 2014
	(expected)
	Guideline for the Certification of Wind Turbines On- and
	Offshore
	DIBt Regulations

Module number [14]: Mechanical drive train

Course	Master of Science Wind Engineering
	Master of Science – Wind Engineering
Module name	Mechanical drive train
Abbreviation (if applicable)	MDT
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Summer semester
Person in charge of module	Prof. DiplIng. P. Quell, University of applied sciences Kiel
Lecturer/s	Prof. DiplIng. P. Quell, University of applied sciences Kiel
Status within the curriculum	Master Course Wind Engineering
	mandatory course
Language	English
Type of course and hours	4 h lectures / exercises
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Aims of the module,	• The students have a profound knowledge of the general set-up,
acquired skills	tasks and functionalities of wind turbine drive trains and their
	components.
	• They do understand the technological and economical aspects of
	different solutions and are able to select preferred technical
	concepts for given conditions and demands.
	• The students are able to describe the operational und
	environmental conditions and their impact on the wind turbine
	drive trains.
	• They know the methods and processes of calculating and
	designing the main components and to integrate them in the
	drive train system.
	 The students do understand the operation and maintenance
	requirements and the applied processes to achieve a successful
	and economical efficient operation throughout the whole life-
	cycle.
	 In parallel they know how to analyze and solve specific tasks and
	assignments given to them within a team. They know how to
	present their results effectively and convincingly.
Subjects covered	Tasks and functionalities of wind turbine drive trains
	 Variants, technology and economics of drive trains
	Design of gearboxes Control directly driven concreters
	Geared and directly driven generators
	Rotor bearing solutions
	Rotor shafts and joins
	Couplings, brakes, shaft-hub-joints
	Operation and maintenance
Form of examination	Assignments with presentation and written examination (90 min.)
Media used	Blackboard, beamer,

Recommended literature	• Germanischer Lloyd (GL): Guideline for the Certification of Wind Turbines, 2010
	• EN 61400-1: Design Requirements for Wind Turbines, 2011
	 Schaffarczyk, A.: Introduction to Wind Energy Technology, 2013, Wiley
	Gasch, R.: Wind Power Plants, 2011, Springer-Verlag
	Hau, E.: Wind Turbines, Springer-Verlag, 2013

Module number [15]: Electrical Engineering for wind turbines

Master of Science – Wind Engineering
Electrical Engineering for wind turbines
EE for WT
Summer semester
Prof. Dr. Frank Hinrichsen, University of applied sciences Flensburg
Prof. Dr. Frank Hinrichsen, University of applied sciences Flensburg
Master Course Wind Engineering
mandatory course
English
4 h lectures
attendance: 60 h
private study: 90 h
5 ECTS
Bachelor degree in an electrical engineering biased discipline, or
successful completion of Module "Electrical engineering for
mechanical engineers"
 Understanding the electrical issues related to wind turbines
Getting to know the electrical components of a wind turbine
power plant
Basics application of electric machines and power electronics
used in wind turbines: generators, transformers, motors,
rectifiers, frequency converters, softstarters in power circuit
and in auxiliary equipment
Pitch and yaw systems
Cables of different voltage levels and for different purposes in
wind turbines and wind parks
 Switch gear (contactors, circuit breakers, fuses, relays)
Safety issues in electric installations
Lightning protection in wind turbines
Controller hardware, communication systems and other
microelectronics used in wind turbines
Condition monitoring
 Reading and understanding wiring diagrams
Written examination (120 min)
black board, power point presentation,
Burton, T. et al.: "Wind Energy Handbook", 2 nd Ed., Wiley, Mai 2011
Ackermann, T.: "Wind Power in Power Systems", Wiley-Blackwell,
Mai 2012
Stiebler, M.: "Wind Energy Systems for Electric Power Generation:
Green Energy and Technology", Springer, 2010
Heier, S.: "Grid Integration of Wind Energy: Onshore and Offshore
Conversion Systems", Wiley, 2014

Module number [16]: FE & Fatique Analysis

Course	Master of Science – Wind Engineering
Module name	FE & Fatique Analysis
Abbreviation (if applicable)	FFA
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Ulf Karnath, k2 E+C GmbH
r erson in charge of module	Rainer Osthorst, aerodyn Energiesysteme GmbH
Lecturer/s	Ulf Karnath, k2 E+C GmbH
	Rainer Osthorst, aerodyn Energiesysteme GmbH
Status within the curriculum	Master Course Wind Engineering
	mandatory-optional course
Language	English
Type of course and hours	2 h lectures
per week	2 h exercises
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Aims of the module,	basic use of ANSYS Workbench
acquired skills	 performing a static linear FE Analysis
	 validation of mesh quality
	 validation of stress results
	 Using FKM guideline for fatigue analyses
	 Performing fatigue analyses of forged steel and cast iron for
	wind turbine components
Subjects covered	linear static analyses
,	 influence of mesh quality at regions with high stress gradients
	 comparison of FEM stress results with stresses calculated with
	analytical approach
	 minimize stresses at hot spots by modifying local geometry
	definitions
	calculation of stress concentration factor on the basis of FEM
	results
	 introduction to fatigue analyses
	 calculation of synthetic SN curves according FKM guideline for
	wind turbine rotor shaft
	• influences of size, mean stress, roughness and notches on SN
	curves
	 using the safety factors of FKM and DNV GL guidelines
	 analysing the damage sum according to Plamgren/Miner and
	safety margin or stress reserve factor
	• fatigue analyses of different materials like forged steel with
	different strength and nodular cast iron
Form of examination	documentation of FE Analysis of main shaft WEC "Optimus"
Media used	black board, power point presentation, PC, beamer

Recommended literature	•	FKM - Analytical Strength Assessment of Components Edition-6/2012, VDMA
	•	DNVGL-ST-0361-2016-09 - Machinery for wind turbines DNV GL Hamburg

Module number [17]: Machinery components & rotor blades

Course	Master of Science – Wind Engineering
Module name	Machinery components & rotor blades
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. Dr. Alois Peter Schaffarczyk, University of applied sciences Kiel
Lecturer/s	Prof. Dr. Alois Peter Schaffarczyk, University of applied sciences Kiel (2 SWS)
	Prof. DrIng. Michael Thiemke, University of applied sciences
	Flensburg (1 SWS)
	Helmut Petrin , AVL (1 SWS)
Status within the curriculum	Master Course Wind Engineering
Status within the curriculum	
	mandatory course English
Language Type of course and hours	4h lectures/practice
per week	
Student workload	attendance: 36 h
Student WUINDau	private study: 114 h
Credit points	5 ECTS
Preconditions according to	
examination regulations	none
Aims of the module,	
acquired skills	The students learn how to calculate and to develop the machinery components of wind turbines;
	machinery components of wind turbines: - mechanical drive train
	- gear boxes
	 the stress distributions (normal and shear stresses) in
	different structures under combined loads
	 natural frequencies and vibrations of structures
	- the life cycle behaviour of structures
	 calculation methods (analytical, numerical)
	 The students will be able, to calculate the stresses and safety
	factors under dynamic wind loads in wind energy converters.
	 Students finally should be able to read relevant literature in this
	subject and understand the foundations of aero-elastic codes to
	a preliminary structural design of wind turbine blade
Subjects covered	Basics of 1 and 2 DOF systems
	 Rotating reference systems
	 Dynamical equations in Lagrange's formulation
	 Natural frequencies, Campbell-Diagram
	 Life cycle calculation methods
	 Analytical calculation methods: beam theory. plates
	 Analytical calculation methods: beam theory, plates Numerical calculation methods: General mathematical
	Numerical calculation methods: General mathematical
	Numerical calculation methods: General mathematical simulation methods, FEM, condensation of FEM models, multi
Form of examination	Numerical calculation methods: General mathematical

Recommended literature	 Schaffarczyk (Ed.) Understanding Wind Power Technology:
	Theory, Deployment and Optimization, Wiley, 2014
	 Germanischer Lloyd: Wind Turbines, 2003
	Germanischer Lloyd: Regulations for the Certification of Wind
	Energy Conversion Systems. Germanischer Lloyd, 1999
	 IEC 61400-1: Wind Turbine Generator Systems, 2006
	 Roark: Formulas of Stress and Strain, 1975
	 Szilard: Theory and Analysis of Plates, 1978
	 International Organization For Standardization: ISO 6336 -
	Calculation of load capacity of spur and helical gears 2006
	 Deutsches Institut f ür Normung e.V.: Calculation of load
	capacity of cylindrical gears; introduction and general influence
	factors, 1987

Module number [18]: Electrical machines, power electronics and control

Course	Master of Science – Wind Engineering
Module name	Electrical machines, power electronics and control
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. DrIng. Frank Hinrichsen, University of applied sciences
	Flensburg
Lecturer/s	Prof. DrIng. Frank Hinrichsen, University of applied sciences
	Flensburg
Status within the curriculum	Master course Wind Engineering
	mandatory-optional course
Language	English
Type of course and hours	4 h lectures
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Basic knowledge in electrical engineering, especially electrical
examination regulations	energy
	engineering
Aims of the module,	• To have basic knowledge on steady state performance of three
acquired skills	phase AC mains, induction generators, synchronous generators
	and power electronic converters for AC machines as used in
	wind power stations and be able to calculate their
	performance.
Subjects covered	Three phase AC mains
	Induction generators
	Synchronous generators
	Power electronic converters for AC machines
Form of examination	Written examination (120 min)
Media used	Black board, power point presentation, beamer
Recommended literature	• Schaffarczyk, J (Editor).: Understanding Wind Power Technology
	– Theory, Deployment and Optimization, Wiley, 2012
	• Schaffarczyk, J (Hrsg.).: Einführung in die Windenergietechnik,
	Hanser Verlag, 2012
	• Heier, S.: Grid Integration of Wind Energy – Onshore and
	Offshore Conversion Systems, 3 rd Edition, Wiley, 2014
	Heier, S.: Windkraftanlagen: Systemauslegung, Netzintegration
	und Regelung , Teubner + Vieweg Verlag, 2009
	Stiebler, M.: Green Energy and Technology: Wind Energy
	Systems for Electric Power Generation, Springer, 2012

Course	Master of Colones Wind Engineering
Course	Master of Science – Wind Engineering,
Module name	Grid Integration
Abbreviation (if applicable)	GI
Subtitle (if applicable)	Mutual effects between wind turbines and power systems
Seminar (if applicable)	seminar
Semester	Winter semester
Person in charge of module	Prof. Dr. Clemens Jauch, University of applied sciences Flensburg
Lecturer/s	Prof. Dr. Clemens Jauch, University of applied sciences Flensburg
Status within the	Master Course Wind Engineering
curriculum	mandatory-optional course
Language	English
Type of course and hours	4 h lectures
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	SECTS
Preconditions according to	none
examination regulations	
Aims of the module,	• understanding the fundamental principles of power systems
acquired skills	• understanding the behaviour of grid connected wind turbines
	• understanding the effects grid connected wind turbines have
	on power systems
	• understanding the effects transient and dynamic events in
	power systems have on wind turbines
Subjects covered	power system basics
	 basic characteristics and quantities
	o flicker
	 power system stability
	power system simulation
	wind farms in power systems
	• interactions between wind turbines and power systems
	 long term effects
	 feed-in management
	 inertial response
	o flicker
	 low voltage ride through and and other transient events
	harmonics
Form of examination	Written examination (120 minutes)
Media used	beamer based presentation, blackboard
Recommended literature	B.M. Weedy, B.J. Cory; Electric Power Systems; John Wiley
	• S. Heier; Grid Integration of Wind Energy Conversion Systems;
	John Wiley & Sons

Module number [19]: Grid Integration

Module number [20]: Tower and sub-structure design and dimensioning

Course	Master of Science – Wind Engineering		
Module name	Tower and sub-structure design and dimensioning simulation		
Abbreviation (if applicable)	TSDD		
Subtitle (if applicable)	In-depth knowledge about tower design and dimensioning		
Seminar (if applicable)			
Semester	Winter semester		
Person in charge of module	Prof. DrIng. Torsten Faber, University of applied sciences		
reison in charge of module	Flensburg		
Lecturer/s	Prof. DrIng. Torsten Faber, University of applied sciences		
Lecturerys	Flensburg		
Status within the curriculum			
Status within the curriculum	Master Course Wind Engineering		
languaga	Mandatory-optional course		
Language	English		
Type of course and hours	2 h lectures,		
per week	2 h exercises		
Student workload	attendance: 60 h		
	private study: 90 h		
Credit points	5 ECTS		
Preconditions according to	Certification and load assumptions		
examination regulations	Tower and rotor structures		
Aims of the module,	Students		
acquired skills	• know to design, dimension and optimise the (sub-)structures of		
	a wind turbine and tower in consideration of structural safety,		
	serviceability and economic efficiency		
	know what materials can be used (steel, reinforced concrete,		
	GRP, wood etc.)		
	can evaluate what materials are applicable under specific		
	conditions		
Subjects covered	Design Calculation		
	Verification against Material Failure		
	Verification against Stability Failure		
	Verification against Fatigue Failure		
	Verification of Serviceability		
	Detail Calculation		
	FEM Calculation		
	Prevention of Resonance		
	Internal resistance –		
	Dimensioning of concrete and reinforcement steel		
	 External resistance – 		
	Assessment of soil, respective interaction between soil and		
	foundation		
	Dynamic behaviour –		
	Validation of natural frequencies which were assumed within		
	load calculation		
Form of examination			
	Written examination (120 min) or Oral examination (depending on		
Madia used	the number of students)		
Media used	black board, power point presentation, beamer and FEM Lab		

Recommended literature	•	Guideline for the Certification of Wind Turbines On- and Offshore DIBt Regulations
	•	Civil Engineering DIN-Standards Eurocodes for civil engineering

Module number [21]: Project: Development of a wind turbine

Course	Master of Science – Wind Engineering
Module name	Project: Development of a wind turbine
Abbreviation (if applicable)	P WT
Subtitle (if applicable)	Focus:
	A Mechanical engineering
	B Electrical engineering
	C Structures
Seminar (if applicable)	project
Semester	Winter semester
Person in charge of module	Prof. Peter Quell, University of applied sciences Kiel
Lecturer/s	A) Prof. Dr. Alois Schaffarczyk, University of applied sciences Kiel
Lecturerys	B) Prof. Dr. Rajesh Saiju, University of applied sciences Flensburg
	C) Prof. Dr. Torsten Faber, University of applied sciences Flensburg
	D) DiplIng. Andreas Manjock, DNV-GL
Status within the curriculum	E) Prof. Peter Quell, University of applied sciences Kiel
Status within the curriculum	Master Course Wind Engineering
Longuage	Mandatory-optional course
Language	English
Type of course and hours per	3 h project discussion
week	17 h self-dependent project work
Student workload	attendance: 30 h
	private study: 270 h
Credit points	10 ECTS
Preconditions according to	none
examination regulations	
Aims of the module, acquired	Project work in an R&D process
skills	 Identification of the components needed to build a wind turbine with the consideration of varying site conditions
	 Dimensioning and designing the relevant mechanical, electrical or
	constructional components of a wind turbine (based on the team focus)
	Gaining in-depth knowledge about the current market situation of wind turbings
	wind turbines
	Understanding the importance of interface management in a
	project and being able to implement interface management to any
	project
	Efficiently working and communicating an interdisciplinary team
Subjects covered	Project planning and project management
	Interdisciplinary project team work interacting between
	mechanics team, electrics team and structures team
	A • Conception of the mechanical drive train
	• Designing the rotor bearing, gearbox, couplings and brakes
	 Aerodynamical and structural design of the rotor blades
	B • Conception of the electrical system
	• Dimensioning transformer, generator, converter and cable
	system for the wind turbine
	Conception of the control system
	C • Load simulation and calculation

	Conception of the tower and foundation
	Designing and dimensioning tower and foundation
Form of examination	Presentation and project report
Media used	-
Recommended literature	 Schaffarczyk, Alois: Understanding Wind Power Technology, Wiley, 2014, ISBN: 978-1118647516 Hau, Erich: Wind Turbines, Springer, 2013, ISBN: 978-3642271502 S. Heier; Grid Integration of Wind Energy Conversion Systems; John Wiley & Sons DNV-GL: Guideline for the Certification of Wind Turbines, 2010 DIN EN 61400: Wind turbines, 2010

Module number [22]: Advanced Wind Farm Planning and Turbine Measurements

Course	Master of Science – Wind Engineering
Module name	Advanced Wind Farm Planning and Turbine Measurements
Abbreviation (if applicable)	
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Dr. rer. nat. Hermann van Radecke, University of applied sciences Flensburg
	Marko Ibsch, DNV GL
Lecturer/s	Dr. rer. nat. Hermann van Radecke, University of applied sciences
	Flensburg
	Marko Ibsch, DNV GL
Status within the curriculum	Master Course Wind Engineering
	elective course
Language	English
Type of course and hours	2 h practical laboratory exercises, attended course of lectures
per week	2 h lecture
Student workload	Attendance: 60 h
	Private study: 90 h
Credit points	5 ECTS
Preconditions according to	Basics in wind properties
examination regulations	Basics in wind energy theory
	Basics in wind turbine systems
Aims of the medule	
Aims of the module, acquired skills	Working in the computer lab the students will learn to use the two most important wind park planning programs. At predefined
	projects with extended lab manuals students are lead trough annual
	energy yield productions with WAsP and other methods, the use of
	short time wind measurements at a site, the calculation of noise
	and shadow emission and their assessment, visual impact and
	photomontage, electrical grid lay out, optimisation and other
	procedures. In the lab the students use the planning programs
	WindPRO, Windfarmer and WAsP and other tools.
	The students will be able to evaluate prognoses of wind-energy
	potential. They will be able to calculate and evaluate emissions.
	Knowledge and understanding of general items about the
	respective standards and the different types of measurements
	Characteristics of wind turbines
	Market relevance
	Possibility to learn from the experience of the lecturers, who come from one of the leading testing companies worldwide
Subjects covered	Energy meteorology, annual energy production calculations,
	met-tower, short-term long-term measurements, own and
	public wind resources, wake models, programs Windpro, Windfarmer, WAsP et al.
	 Emissions and influences on the environment, noise, shadow,
	programs Windpro, Windfarmer et al
	Visual impact, visibility, photomontage, programs Windpro,
	Windfarmer et al.

	 Electrical layout of windpark, programs Windpro, Windfarmer et al.
	Optimisation of a windpark layout, programs Windpro,
	Windfarmer
	 Evaluation of economic efficiency of a windpark
	General overview
	Standards and Guidelines for Turbine Measurements
	Prototype testing
	Power Performance
	Loads
	Acoustics
	Power Quality
-	Test of Turbine Behaviour
Form of examination	Laboratory report
	Written examination (120 min)
Media used	Computer lab, laboratory experiments, whiteboard, PC and video
	projector, e-learning platform, lecture notes, program manuals
	Power Point Presentations
Recommended literature	 Troen, I. and E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, 1989
	• Manwell, J.F., McGowan, J.G., Rogers, A.L.: Wind Energy
	Explained. Wiley, Chichester, 2009
	CEwind, Hrsg.: Einführung in die Windenergietechnik. Carl
	Hanser Verlag, München, 2012.
	 CEwind, ed.: Understanding Wind Energy Technology. Wiley, 2014 i.p.
	IEC 61400 International Electrotechnical Commission
	Technische Richtlinien (FGW-Richtlinien)
	Manual program Windpro
	Manual program Windfarmer
	Wind Turbines - Fundamentals, Technologies, Application,
	Economics - 2nd edition
	• E Hau, Springer 2006, Hardcover XVIII, 783 p. 552
	• Gasch, R., Twele, J.: Wind Power Plants - Fundamentals, Design,
	Construction and Operation. James and James, 2005, Softcover
	416pp ISBN 9781902916385
	• Wind Power in Power Systems, Edited by Thomas Ackermann,
	Wiley January 2005, Hardcover 742 pp ISBN 0470855088
	Wind Energy - The Facts, European Wind Energy Association
	(EWEA), Earthscan, March 2009, Hardback, 488 pages, ISBN: 978184407710
	Aerodynamics of Wind Turbines (2nd Edition), Martin O.L.
	Hansen, Earthscan, Hardcover 192pp ISBN 9781844074389
	Wind Energy Explained: Theory, Design and Application

Course	Master of Science – Wind Engineering
Module name	Offshore wind energy: Operation and Maintenance
Abbreviation (if applicable)	OWE; O&M
Subtitle (if applicable)	
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	DrIng. Axel Birk, Hanseatic Renewable Consulting GmbH
Lecturer/s	DrIng. Axel Birk, Hanseatic Renewable Consulting GmbH
Status within the	Master Course Wind Engineering
curriculum	elective course
Language	English
Type of course and hours	4 h lectures
per week	
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	none
examination regulations	
Aims of the module,	• The students have a profound knowledge of the general set up
acquired skills	and the functionalities of offshore wind wind power plants
	(OWPP)
	• They understand the market, the potential and the economics
	of offshore wind energy. They are able to select technical
	solutions based on a balanced evaluation of yield and costs.
	The students are able to describe the operational und
	environmental conditions offshore and their impact on the OWPP.
	• They know the different types of offshore foundations and are
	· mey know the uncrent types of onshore roundations and are
	able to select the best solution for given environmental
	able to select the best solution for given environmental conditions.The students are able to describe the logistical processes for
	able to select the best solution for given environmental conditions.
	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage
	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines
	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention
	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached
	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached The students will learn to create documentation and use life
	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached The students will learn to create documentation and use life cycle management techniques
	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached The students will learn to create documentation and use life cycle management techniques In the course the ability to identify and influence main cost
	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached The students will learn to create documentation and use life cycle management techniques In the course the ability to identify and influence main cost elements of O&M phase will be explained
Subjects covered	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached The students will learn to create documentation and use life cycle management techniques In the course the ability to identify and influence main cost elements of O&M phase will be explained Differences between onshore and offshore applications
Subjects covered	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached The students will learn to create documentation and use life cycle management techniques In the course the ability to identify and influence main cost elements of O&M phase will be explained Differences between onshore and offshore applications Offshore markets and potential
Subjects covered	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached The students will learn to create documentation and use life cycle management techniques In the course the ability to identify and influence main cost elements of O&M phase will be explained Differences between onshore and offshore applications Offshore markets and potential Economics of offshore wind parks
Subjects covered	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached The students will learn to create documentation and use life cycle management techniques In the course the ability to identify and influence main cost elements of O&M phase will be explained Differences between onshore and offshore applications Offshore markets and potential Economics of offshore wind parks Operational and environmental conditions offshore
Subjects covered	 able to select the best solution for given environmental conditions. The students are able to describe the logistical processes for construction, transport, installation and servicing of OWPPs. The Module will create general understanding to manage processes to operate and maintain wind turbines The competence to use planning methods for intervention (scheduled and unscheduled) will be teached The students will learn to create documentation and use life cycle management techniques In the course the ability to identify and influence main cost elements of O&M phase will be explained Differences between onshore and offshore applications Offshore markets and potential Economics of offshore wind parks

business process O&M (elements, interfaces)

scheduled interventions (ressources, timing and cost)

•

•

Module number [23]: Offshore wind energy: Operation and Maintenance

	 unscheduled intervention (ressources, timing and cost) Health and Safety Documentation needs for Life Cycle Management Spare part management for tear and wear parts or regular spares work instructions for O&M
	RDS-PP as tool to describe wind power plants
Form of examination	Oral examination
Media used	Beamer based presentation
Recommended literature	 Heier, S.: Grid Integration of WIND ENERGY CONVERSION SYSTEMS. 2nd Edition, John Wiley & Sons Ltd. Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 2006. Translated by Rachel Waddington, Swadlincote, UK Lesny, Kerstin: Foundations for Offshore Wind Turbines, VGE, 2010 Det Nerska Verites (DNV): Regulations for the Design of
	 Det Norske Veritas (DNV): Regulations for the Design of Offshore Wind Turbine Structures, 2005 Praxishandbuch Schnittstellenmanagement Offshore Wind EEHH, Maritimes Cluster ISBN: 978-3-00-05402024-0

Module number [24]: Computational Fluid Dynamics

Course	Master of Science – Wind Engineering, elective
Module name	Computational Fluid Dynamics
Abbreviation (if applicable)	CFDLS
Subtitle (if applicable)	Introduction to Computational Fluid Dynamics with OpenFOAM
Seminar (if applicable)	
Semester	Winter semester
Person in charge of module	Prof. Dr. Alois Peter Schaffarczyk, University of applied sciences Kiel
Lecturer/s	Prof. Dr. Alois Peter Schaffarczyk, University of applied sciences Kiel
Status within the curriculum	Master Course Wind Engineering
	elective course
Language	English
Type of course and hours per week	short introduction with large amounts of practice (2)
Student workload	attendance: 60 h
	private study: 90 h
Credit points	5 ECTS
Preconditions according to	Sound Knowledge of Wind Turbine Aerodynamics, helpful: basic
examination regulations	knowledge of Linux, C++
Aims of the module,	• The module is an introduction to CFD. The students will learn
acquired skills	how to use CFD and how to apply it to wind turbine
	aerodynamics
	• Additionally the students will get to know and learn how to use
	OpenFOAM and other open source codes
Subjects covered	What is CFD?
-	 Understanding and working with Linux and C++
	 Understanding and working with OpenFOAM
	 Meshing, Solving, Post-Processing
	 Solving Problem 1: laminar and turbulent flat-plate boundary
	layer
	 Solving Pr. 2: 2D Wind Turbine Airfoil DU-W-300-mod
	 Solving Pr. 2: 2D wind Public Anton Do-W-Solving Solving Pr. 3: Actuator Disk-Model of the MEXICO Rotor
	 Solving Pr. 4: Full 3D Wind Turbine Wing (Mexico)
Form of examination	Oral examination
Media used	
Recommended literature	PC, power point presentation
	• A. P. Schaffarczyk, Introduction to Wind Turbine Aerodynamics,
	Springer Verlag, 2014, ISBN 978-3-642-36408-2
	 CAJ Fletcher, Computational Techniques for Fluid Dynamics, 2 Vol. Springer, 1991
	Vol. Springer, 1991
	OpenFOAM User Guide 2.2.1, June 2013 Schemens et al. Sinch annual of 15A Task 20, Manuart (Phase)
	 G. Schepers et al, Final report of IEA Task 29, Mexnext (Phase 1): Analysis of Mexico wind tunnel measurements, ECN-E-12- 004, Petten, NL, 202

Module number [25]: Modelling & Simulation of Wind Turbines

Course	Master of Science – Wind Engineering
Module name	Modelling & Simulation of Wind Turbines
Abbreviation (if applicable)	MaS
Subtitle (if applicable)	Modelling wind turbines in a commonly used simulation
	environment for simulating the general behaviour of wind turbines
	during normal operation
Seminar (if applicable)	seminar
Semester	Winter semester
Person in charge of module	Prof. Dr. Clemens Jauch, Flensburg University of Applied Sciences
Lecturer/s	Prof. Dr. Clemens Jauch, Flensburg University of Applied Sciences
Status within the	Master Course Wind Engineering
curriculum	elective course
Language	English
Type of course and hours	2 h lectures
per week	2 h laboratory exercise
Student workload	attendance: 60 h
	private study:90 h
Credit points	5 ECTS
Preconditions according to	General knowledge in undergraduate mathematics, general ability
examination regulations	to use computers, basic experience in the use of engineering
	software
Aims of the module,	• The students learn the general functionality of a wind turbine
acquired skills	system: The interrelation between wind speed, pitch angle,
	rotor speed, torque and power in a wind turbine are discussed
	to the extent so the students can apply this knowledge in the
	laboratory
	• The lab exercise comprises modelling a general wind turbine system with the simulation tool Matlab/Simulink.
	• Goal of the lab exercise is a running simulation model in
	Matlab/Simulink that reproduces the response of a wind
	mattab/simalink that reproduces the response of a wind
	turbine in terms of pitch angle, rotor speed, torque and power,
	turbine in terms of pitch angle, rotor speed, torque and power,
Subjects covered	turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in
Subjects covered	turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities
Subjects covered	turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation Simulation Environments for Engineering
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation Simulation Environments for Engineering Time-Invariant and Time-Variant Systems
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation Simulation Environments for Engineering Time-Invariant and Time-Variant Systems Linear and Non-Linear Systems
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation Simulation Environments for Engineering Time-Invariant and Time-Variant Systems Linear and Non-Linear Systems Differential Equations
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation Simulation Environments for Engineering Time-Invariant and Time-Variant Systems Linear and Non-Linear Systems Differential Equations Numerical Integration
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation Simulation Environments for Engineering Time-Invariant and Time-Variant Systems Linear and Non-Linear Systems Differential Equations Numerical Integration Block Diagram Representation
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation Simulation Environments for Engineering Time-Invariant and Time-Variant Systems Linear and Non-Linear Systems Differential Equations Numerical Integration Block Diagram Representation Transfer Functions and State Space Approach
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation Simulation Environments for Engineering Time-Invariant and Time-Variant Systems Linear and Non-Linear Systems Differential Equations Numerical Integration Block Diagram Representation Transfer Functions and State Space Approach Per Unit Representation Initialisation
Subjects covered	 turbine in terms of pitch angle, rotor speed, torque and power, when subject to variations in the wind speed and variations in grid quantities An Introduction to Modelling and Simulation Fields of Application and Advantages of Modelling and Simulation Simulation Environments for Engineering Time-Invariant and Time-Variant Systems Linear and Non-Linear Systems Differential Equations Numerical Integration Block Diagram Representation Transfer Functions and State Space Approach Per Unit Representation

	 Modelling Wind Turbines Models of Wind Turbine Subsystems Wind Model Aerodynamics Drive Train Tower Generator and Converter Control System Interface to Power System Block Diagrams of Different Wind Turbine Systems
Form of examination	Written examination (120 minutes)
Media used	Beamer based presentation, blackboard, computer laboratory with Matlab/Simulink software
Recommended literature	Documentations and examples on the Matlab homepage http://www.mathworks.de/support/

Module number [26]: Wind Engineering Challenge Project

Course	Master of Science – Wind Engineering
Module name	Wind Engineering Challenge Project
Abbreviation (if applicable)	WEP
Subtitle (if applicable)	. a) Mechanical & Electrical Engineering
	. b) System Design (Modeling & Optimization)
	. c) Physical Prototyping
	. d) Project Management
Seminar (if applicable)	project
Semester	Winter semester
Person in charge of module	Prof. Dr. Torsten Faber, Rasmus Borrmann, Robert Rudolf, University of applied sciences Flensburg
Lecturer/s	Robert Rudolf, Rasmus Borrmann
Status within the curriculum	optional
Language	English
Type of course and hours	2h project discussion
per week	2h project work
Student workload	Attendance: 60h
	Private study: 90h
Credit points	5 ECTS
Preconditions according to	None
examination regulations	
Aims of the module,	Acquire practical R&D experience by participating in a wind-specific
acquired skills	engineering competition or challenge
Subjects covered	Design Theory
	Practical aerodynamic design (Rotor design tradeoffs, surface
	finish effects, fairing design, manufacturing)
	 Project-specific theory (e.g. competition)
	Virtual Prototyping
	CFD: 2D boundary layer code (XFoil), 3D panel method
	(XFLR5), and rotor BEM (QBlade)
	Performance Modeling
	Numerical Optimization
	Physical Prototyping
	Geometric Dimensioning and Tolerancing (GD&T)
	 CNC machining (Hot wire cutting, milling, 3D printing)
	Measurement
	 System characterization (Friction, Drag, etc.)
	Wind tunnel testing
	Site assessment
	Performance measurement
	Optional: telemetry
Form of examination	Periodic design reviews (33%), simulation report (33%), physical prototype (34%)
Media used	n/a

Recommended literature	Course M. Church R. Milluchers D. (2000) Theory and
Recommended literature	 Gaunaa, M., Øye, S. & Mikkelsen, R. (2009). Theory and
	Design of Flow Driven Vehicles Using Rotors for Energy
	Conversion. In EWEC 2009 Proceedings online. Brussels: EWEC
	 Manwell, J., McGowan, J. & Rogers, A. (2009). Wind Energy
	Explained: Theory, Design and Application. Chichester: John
	Wiley & Sons Ltd.
	 Marten, D., Wendler, J., Pechlivanoglou, G., Nayeri, C. &
	Paschereit, C. (2009). QBlade: An open source tool for Design
	and Simulation of horizontal and vertical axis wind turbines.
	International Journal of Emerging Technology and Advanced
	Engineering 3 (Special Issue 3), 264-269.
	 Meschia, F. (2008). Model analysis with XFLR5. Radio
	Controlled Soaring Digest 25(2), 27-51.
	 Competition-/challenge-specific material (TBD)

Module number [27]: Master thesis

Course	Master of Science – Wind Engineering,
Module name	Master thesis
Abbreviation (if applicable)	-
Subtitle (if applicable)	-
Seminar (if applicable)	-
Semester	4 th semester (or 3 rd for students having been registered for the 2nd
	semester of the programme immediately)
Person in charge of module	2 professors of the course of study
Lecturer/s	-
Status within the curriculum	Master Course Wind Engineering
	mandatory course
Language	English, German (if an application is filed accordingly)
Type of course and hours	Writing of final thesis
per week	 Preparation and realisation of colloquium
P	 The thesis is to be produced in a time period of five months.
Student workload	attendance: -
	private study: 900 h
Credit points	30 ECTS
Preconditions according to	For students having been registered for the 2nd semester of the
examination regulations	programme immediately, pursuing the programme as a three- semester course of study, a minimum of 45 credit points (CP) is the prerequisite for admission to the thesis. For students having started with the first semester of the programme, pursuing the programme as a four-semester course of study, a minimum of 75 credit points (CP) is the prerequisite for admission to the thesis.
Aims of the module, acquired skills	 With the Master's thesis the students show that they are able to independently compose a comprehensive work that complies with high methodological, conceptual and scientific demands. They are also able to present the results in written and oral form.
Subjects covered	 The topic of the thesis has to be related to one of the taken modules of the study and has to be supervised by at least one professor of the study program. Subjects covered: Conception of a work plan Independent study of related literature and methodology Application of methodology Compilation of the thesis Presentation of results Colloquium
Form of examination	The colloquium is scheduled to take 60 minutes for each candidate. The grade of the master's thesis is made up of the grade for the written thesis counting 70% and the grade for the colloquium counting 30%.
Recommended literature	-
necommended interature	-