Consecutive
Master Study Programme

Biotechnology and Process Engineering

at

University of Applied Sciences Flensburg

Flensburg, October 2013
1.1 Objectives of the Master Program Biotechnology and Process Engineering

This is a consecutive Master Program following the Bachelor Program Biotechnologie und Verfahrenstechnik [Biotechnology and Process Engineering] at FH Flensburg. The program is thus mainly targeted at students of our university and grants them the opportunity to gain further qualification at the interface of sciences and technology. As the Program is conducted in English, it is also targeted at foreign students from related subjects of studies.

The Master Program aims to convey the knowledge and know-how necessary to enable students to recognise and analyse problems in the fields of biotechnology and process engineering, to develop own technical and scientific solutions for these problems and to successfully transfer these solutions into market-ready products and services.

This objective is achieved through the teaching of in-depth knowledge on specialized aspects of biotechnology and process engineering on the one hand. On the other hand the curriculum addresses the application of this knowledge to scientific problems from the field. Aside from expertise in the respective field, a number of general skills are further developed with this approach. These qualifications include independent and self-contained working when structuring a problem, identification and application of suitable methods as well as goal oriented, cooperative team work to just name a few.

In the final part of the Program the ability to approach new and unknown topics in a methodical and systematic manner will be further developed by means of continuously working on scientific projects supported and guided by teaching staff.

As stated in the first accreditation already, any graduate of the Master Program Biotechnology und Process Engineering shall be granted admission to Higher Civil Service [Höherer Dienst in German Civil Service].

1.2 Program Outcomes

The qualifications to be acquired as outcomes of the Program may be divided into three main areas:
- Technical and professional skills
- Personal skills
- General skills

In general all students are to be equipped with thorough abilities to analyse and solve technical and scientific problems as they occur in the material converting industry. Aside from a solid basis of knowledge and the ability to draw connections between different fields of expertise this requires the training of goal oriented action and the acquisition of the ability to independently acquire knowledge in the sense of lifelong learning.

According to a recommendation of the Association for Process Engineering and Chemistry Engineering at the Association of German Engineers [VDI-GVC] graduates from
the highly application oriented Master Program *Biotechnology and Process Engineering* may pursue careers doing highly specialized work as well as taking on management and C-level positions in the development, design and realisation as well as management and operation of processes and plants or they may seek an employment within the Higher Civil Service [*Höherer Dienst* in German Civil Service].

Only a combination of the relevant skills and competences named in the following list will lead to success in a professional context; the list furthermore allows for a placement of the different modules and the content of teaching into the context of skills to be acquired in the course of the Program.

- Technical and professional skills
 - Competences in technology and sciences
 - Methodical competence
 - Intercultural competence
- Personal skills
 - Self- and Project Management
 - Communication Skills
 - Responsibility
 - Ability to accept criticism
 - Language Competence (English)
- General skills
 - Problem solving skills
 - Ability for autonomous and lifelong learning
 - Ability to act successfully and focused
 (Do the right things the right way.)

The following overview in form of a table visualises the allocation of each type of qualification into the Program’s different modules in the form of a matrix of objectives.
Classification of the Objectives of the Master Program, 1st semester

Technical and professional skills

<table>
<thead>
<tr>
<th>Module</th>
<th>Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Theory of Cell Biology</td>
<td></td>
</tr>
<tr>
<td>Cell Culture Technology</td>
<td></td>
</tr>
<tr>
<td>Advanced Instrumental Analysis</td>
<td></td>
</tr>
<tr>
<td>Advanced Theory of Process Engineering</td>
<td></td>
</tr>
<tr>
<td>Bioanalysis</td>
<td></td>
</tr>
<tr>
<td>Design, Economy, and Sustainability</td>
<td></td>
</tr>
<tr>
<td>Fluid Flow in Process Equipment</td>
<td></td>
</tr>
<tr>
<td>Quality Systems in Food Industry</td>
<td></td>
</tr>
<tr>
<td>Measuring Techniques</td>
<td></td>
</tr>
<tr>
<td>Particles and Cells</td>
<td></td>
</tr>
<tr>
<td>Disintegration of Particles and Cells</td>
<td></td>
</tr>
<tr>
<td>First-Time Manager</td>
<td></td>
</tr>
<tr>
<td>Technical and scientific</td>
<td>x x x x x x x x</td>
</tr>
<tr>
<td>Methodical</td>
<td>x x x x x x x x x x x x</td>
</tr>
<tr>
<td>Intercultural</td>
<td>achieved through international students</td>
</tr>
</tbody>
</table>

Personal skills

<table>
<thead>
<tr>
<th>Skill</th>
<th>Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self and project management</td>
<td>x x x x</td>
</tr>
<tr>
<td>Communication skills</td>
<td>x x x x</td>
</tr>
<tr>
<td>Responsibility</td>
<td>x x x x</td>
</tr>
<tr>
<td>Ability to accept criticism</td>
<td>x x x x</td>
</tr>
<tr>
<td>Language competence</td>
<td>active and passive use of the English language</td>
</tr>
</tbody>
</table>

General skills

<table>
<thead>
<tr>
<th>Skill</th>
<th>Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem solving skills</td>
<td>x x</td>
</tr>
<tr>
<td>Autonomous and lifelong learning</td>
<td>x x</td>
</tr>
<tr>
<td>Successful and strategic action</td>
<td>x x</td>
</tr>
</tbody>
</table>

Matrix part 1: Modules and Electives in the 1st semester
Classification of the Objectives of the Master Program, 2nd and 3rd semester

<table>
<thead>
<tr>
<th>Technical and professional skills</th>
<th>Program's Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>technical and scientific</td>
<td>Protein Factory - Theory</td>
</tr>
<tr>
<td>methodical</td>
<td>Protein Factory - Team Project</td>
</tr>
<tr>
<td>intercultural</td>
<td>Chem. and Green Eng. - Theory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Personal skills</th>
<th>Program's Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self and project management</td>
<td>Chem. and Green Eng. - Team Project</td>
</tr>
<tr>
<td>Communication skills</td>
<td>Separation Techn. - Theory</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Separation Techn. - Team Project</td>
</tr>
<tr>
<td>Ability to accept criticism</td>
<td>Food Biotechn. and Processing - Theory</td>
</tr>
<tr>
<td>Language competence</td>
<td>Food Biotechn. and Processing - Team Project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General skills</th>
<th>Program's Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem solving skills</td>
<td>Master-Thesis</td>
</tr>
<tr>
<td>Autonomous and lifelong learning</td>
<td></td>
</tr>
<tr>
<td>Successful and strategic action</td>
<td></td>
</tr>
</tbody>
</table>

Matrix part 2: Modules in the 2nd and 3rd semesters and Master Thesis

1.3 Objectives of the Modules

Please also see the module handbook following this!

The respective coordinator will outline the objectives of each module in the module description. Apart from the acquisition of specialised knowledge further aspects on the acquisition of skills will be addressed or result from the form of teaching. Without being categorised according to module, these are:

- Skills to find solutions to problems with the help of state-of-the-art experimental or numeric methods
- Working together with others to achieve a goal (team work, project management)
- Processing and presentation of results (written and oral communication)

Chapter 1.2 matches the objectives and results of the modules as described in the module handbook with the Program’s objectives.
Module Advanced Theory of Cell Biology and Cell Culture Technology:
The module is divided into two parts and teaches the students the necessary background knowledge to enable them to work with cell cultures. The first part will deal with current research results from molecular biology and current methods from cell biology. The processes and methods will be revised, extended and transferred to the requirements of cell culture technology.
In the second part students will acquire in-depth knowledge on bio process engineering necessary for the application in animal cell cultures. Thus students will be enabled to design and measure fermentation with cell cultures. Students will be able to analyse, evaluate and communicate operating data and results from cell culture processes.

Module Advanced Instrumental Analysis:
This module aims at familiarising the students with the basic principles, the terminology, methodology, instrumentation, implementation and characteristics of the most commonly used spectroscopic measuring techniques and chromatographic separation methods. Students will acquire the ability to appropriately apply these methods to identify physical and chemical data which need to be determined as part of biotechnological and process engineering control and research processes.
In the end students will have gained the competence to design and manage analytical procedures as well as to evaluate the data thus generated for the purpose of process control and management.

Module Advanced Theory of Process Engineering:
This module builds on classes on Thermodynamics and Heat and Mass Transfer from the Bachelor Program. In regards to Thermodynamics knowledge on the behaviour of real fluids and real mixtures in particular will be taught, in regards to Mass Transfer the module will address the specific characteristics of Mass Transfer in analogy to Heat and Impulse Transfer as well as their differences. Typical processes in which mass transfer plays a key role will be addressed. The difference between the balance based processes the Bachelor Program focused on in large parts and transfer based processes will be paid special attention to.
Accompanying tutorials will further enhance the knowledge thus acquired: Thermodynamic state variables will be determined and reported for basic operations in process engineering, in the field of mass transfer the students will learn to set up transfer models and to generate results for the transfer variables.
Students will be able to integrate thermodynamic and mass transfer specific models into the design of typical basic operations. They will be able to evaluate results from research and actual plant operation.

Module Bioanalysis:
Students are introduced to suitable measuring sensors for a number of biological and physic-chemic parameters and their function.
On the basis of this knowledge measuring sensors are chosen and applied to identify biological and physic-chemic parameters, e.g. microorganisms, for various tasks that are to be executed in a laboratory.
Students will be able to tackle bio analytical tasks on a microscopic as well as on a macroscopic level.

Module Design, Economy and Sustainability in Chemical Engineering:
Students will acquire basic knowledge and methods to be able to design biotechnological and procedural processes in regards to plant design and construction. Special focus
will be paid to a holistic approach to consider economic, ecologic and social aspects in the same manner and thereby follow the principles of sustainability.

Module Fluid Flow in Process Equipment:
The flow of fluids in multi-phase mixtures is the rule rather than the exception in process equipment. The basics of this flow will be taught. Tutorials will focus on the design of equipment and components to generate dispersed phases, guide them through the apparatus in the desired manner and separate them again later on. Students will be able to hydraulically design suitable apparatuses and plants for multi-phase reaction and separation processes in a basic draft.

Module Quality Systems in Food Industry:
Students will acquire the characteristics of a quality management system. Finding solutions to quality problems will be part of the module as well as the specific requirements of the food industry. Examples from the food industry will be used to analyse quality problems and arrive at solutions for them. Students will be able to apply the principles of quality management.

Module Professional Leadership and Rhetoric:
Students will acquire basic knowledge on Human Resources Management, Rhetoric and verbal and non-verbal communication. Tutorials and trainings will enable the students to acquire a number of basic techniques such as “active listening” and “coaching” in Human Resources Management as well as argumentative and persuasion techniques to be used when dealing with staff and colleagues. Students will thus improve their language and communication skills which are necessary for Human Resources Management.

Module Identification and Evaluation of Relevant Literature for Scientific Projects:
Students will be introduced to the methods of scientific bibliographic research with the help of examples. They will develop the ability to identify and evaluate the scientific status quo of a project according to literature and use literature to solve problems. They will be able to manage a project more efficiently based on their knowledge of the scientific background.

Module Particles and Cells Measuring Techniques:
Taking into account the most recent scientific literature the students will acquire knowledge on measurement in the field of particle technology and purification technology. Some of the measurement methods will be applied as part of hands-on lab classes. The students will evaluate the results of the work carried out here in regards to their significance for practical application. Students will be able to choose the appropriate method of measurement, evaluate the results gained through it and draw conclusions regarding a product's properties and characteristics.

Module Disintegration of Particles and Cells:
Taking into account the most recent scientific literature students will acquire knowledge on disintegration and disruption techniques in the field of particle technology and purification technology. The use of appropriate measuring methods for process management will be discussed; the design of disintegration processes from development to testing level as well as the process design will be addressed. A process in a laboratory mill will be used to study and experience the topic in greater detail.
Students will be able to design appropriate disintegration processes, evaluate their performance and thus generate the desired product properties and characteristics.

Module First-Time Manager:
Current management principles will be employed to familiarise students with the characteristics of and requirements for managing positions. Examples will help to teach students management and leadership, teamwork and means for efficient communication. Students will thus be enabled to apply management and communication skills.

Module Project Theory und Team Project:
These 24 CP elective modules provide a thematic unit made up of theory and practice (project). Each lecturer may decide on the manner of teaching the theory part of the module, this may be done in the form of seminar classes or lectures. In either form students will acquire the theoretical background required to successfully execute the complex project work in a group. Not only will the participation in this module help to develop technical skills, it will also and especially train personal and general skills as mentioned and discussed in chapter 1.2 of this report.
Students will be able to define goals for a complex problem, take measures, i.e. use their theoretical and practical knowledge to decide on what steps to take to achieve these goal or sub-goals, to visualise and evaluate generated results as well as to communicate the results orally or in a written text.
2. Module Manual / Modulhandbuch

Modules / Module:

Curriculum / Studienplan ... 10
Advanced Theory of Cell Biology .. 11
Advanced Theory of Cell Culture Technology .. 12
Advanced Instrumental Analysis ... 13
Advanced Theory of Process Engineering ... 14
Project Theory: Protein Factory I .. 16
Project Theory: Protein Factory II ... 17
Team Project: Protein Factory .. 18
Project Theory: Chemical Process Engineering ... 19
Project Theory: Green Engineering ... 21
Team Project: Chemical Process Engineering / Green Engineering 23
Project Theory: Separation Technology 1 ... 25
Project Theory: Separation Technology 2 ... 26
Team Project: Separation Technology ... 27
Project Theory: Food Biotechnology and Processing 1 .. 28
Project Theory: Food Biotechnology and Processing 2 .. 29
Team Project: Food Biotechnology and Processing ... 30
NTE – Professional Leadership and Rhetoric .. 31
NTE – Identification and evaluation of relevant literature for scientific projects 32
NTE – Quality systems in food industry .. 33
NTE – First-Time Manager ... 34
TE – Bioanalysis ... 35
TE – Fluid Flow in Process Equipment .. 36
TE – Design, Economy and Sustainability in Chemical Engineering 37
TE – Disintegration of Particles and Cells .. 38
TE – Particles and Cells Measuring Techniques .. 39
Master-Thesis ... 40

Abbreviations:
NTE: Non-Technical Elective
TE: Technical Elective
Curriculum / Studienplan

Consecutive Study Programme

Master of Science Biotechnology and Process Engineering

Flensburg University of Applied Sciences

<table>
<thead>
<tr>
<th>Term</th>
<th>Semester 1</th>
<th>Semester 2</th>
<th>Semester 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summer</td>
<td>Winter</td>
<td>Summer</td>
</tr>
<tr>
<td>1</td>
<td>VMNIG: Advanced Theory of Cell Biology and Cell Culture Technology</td>
<td>VIA: Project Theory 2)</td>
<td>TH: Master-Thesis</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VMNIG: Advanced Instrumental Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>VBVF: Advanced Theory of Process Engineering</td>
<td>VIA: Team Project / Practical Experience 2)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>VBVF: Technical Elective Courses 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>NT: Non-Technical Elective Courses</td>
<td>VIA: Technical Elective Courses 1)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20 h, 30 ECTS</td>
<td>20 h, 30 ECTS</td>
<td>30 ECTS</td>
</tr>
</tbody>
</table>

1) Electric Courses (Examples):
- Bioanalysis
- Disintegration of Particles and Cells
- Particles and Cells Measuring Techniques
- Quality Systems in Food Industry
- Professional Leadership and Rhetoric

2) Projects:
- Protein Factory
- Chemical Process Engineering / Green Engineering
- Separation Technology
- Food Biotechnology and Processing

Recommendations made by VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (VDI-GVC):
- "Qualification Framework and Curricula of Degree Programmes in Process Engineering, Biochemical and Chemical Engineering at Universities and Universities of Applied Science", 2. ed., 2008

VMNIG: Vertiefung der mathematisch-naturwissenschaftlichen und ingenieurwissenschaftlichen Grundlagen

VBVF: Vertiefung und Erweiterung biotechnologischer und verfahrenstechnischer Fächer

VIA: Vertiefung der ingenieuranwendungen

NT: Nichttechnische Fächer

TH: Thesis
<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Biotechnology and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Module:</td>
<td>Advanced Theory of Cell Biology and Cell Culture Technology</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>ATCB</td>
</tr>
<tr>
<td>Subtitle:</td>
<td>---</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Advanced Theory of Cell Biology</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Helmut Erdmann</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. Helmut Erdmann</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Udo Peters</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Compulsory Class, Semester 1</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Lecture / 2 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study time in class: 30 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 60 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>3 in combination with CCT</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered Student to M.Sc. BPE or on request</td>
</tr>
<tr>
<td>Study Goals / Skills:</td>
<td>Students will be introduced to newest results of research in molecular biology and state of the art methods in cell biology; they learn to use basic skills of molecular biology and transfer them to applications in cell culture techniques.</td>
</tr>
<tr>
<td>Content:</td>
<td>Isolation of cells, purification and characterization of proteins, intracellular compartimentation and protein sorting, intravesicular traffic, cell communication, cell birth, apoptosis, cancer</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Written or oral exam</td>
</tr>
<tr>
<td>Media:</td>
<td>Lecture Notes, Slides, Board, E-Learning</td>
</tr>
<tr>
<td>Literature:</td>
<td>➢ Alberts et al.: Molecular Biology of the Cell</td>
</tr>
<tr>
<td></td>
<td>➢ Alberts et al.: Essential Cell Biology</td>
</tr>
<tr>
<td></td>
<td>➢ Lodish et al.: Molecular Cell Biology</td>
</tr>
<tr>
<td>Degree Program:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Title of Module:</td>
<td>Advanced Theory of Cell Biology and Cell Culture Technology</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Cell Culture Technology</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>CCT</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Helmut Erdmann</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. Hans-Udo Peters</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Program:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Compulsory Class, Semester 1</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Seminar 2 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 30 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 60 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>3 in combination with ATCB</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered students to M.Sc. BPE or on request</td>
</tr>
<tr>
<td>Study Goals / Skills:</td>
<td>Knowledge:</td>
</tr>
<tr>
<td></td>
<td>• The lecture will address extended bioprocess engineering principles to apply to the advanced technology of mammalian cell culture</td>
</tr>
<tr>
<td></td>
<td>Skills:</td>
</tr>
<tr>
<td></td>
<td>• Design of cell culture fermentation processes</td>
</tr>
<tr>
<td></td>
<td>Expertise:</td>
</tr>
<tr>
<td></td>
<td>• Analysis and interpretation of cell culture fermentation data</td>
</tr>
<tr>
<td></td>
<td>• Communicate scientific contents by oral presentations in English language</td>
</tr>
<tr>
<td>Content:</td>
<td>1 Lecture topics, presentations, textbooks/literature</td>
</tr>
<tr>
<td></td>
<td>2 Historic outline, products and future trends</td>
</tr>
<tr>
<td></td>
<td>3 Cell cultures</td>
</tr>
<tr>
<td></td>
<td>4 Complete media</td>
</tr>
<tr>
<td></td>
<td>5 Serum free media (pres.)</td>
</tr>
<tr>
<td></td>
<td>6 Insect cell-based rec. protein production (pres.)</td>
</tr>
<tr>
<td></td>
<td>7 Bioreactors for cell cultures</td>
</tr>
<tr>
<td></td>
<td>8 Contamination (pres.)</td>
</tr>
<tr>
<td></td>
<td>9 Quality control of biotechnological products (pres.)</td>
</tr>
<tr>
<td></td>
<td>10 Safety and regulatory aspects (pres.)</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Written or oral exam</td>
</tr>
<tr>
<td>Media:</td>
<td>Lecture notes, slides, videos, illustrative material</td>
</tr>
<tr>
<td>Degree Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Title of Module:</td>
<td>Advanced Instrumental Analysis</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>AIAL</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Advanced Instrumental Analysis</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Werner Baumeister</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. Werner Baumeister</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Compulsory Class, Semester 1</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Lecture / 4 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class:</td>
</tr>
<tr>
<td></td>
<td>60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home:</td>
</tr>
<tr>
<td></td>
<td>120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered Student to M.Sc. BPE or on request</td>
</tr>
<tr>
<td>Study Goals / Skills:</td>
<td>The goal of this lecture is to provide students with knowledge of the fundamental principles, terminology, methodology, instrumentation, implementation and characteristics of the most widely applied spectroscopic measurement and chromatographic separation methods. Students should gain the ability to apply these methods for the determination of physical and chemical data commonly employed in biotechnology and process engineering. Students should gain the competence to select and supervise analytical procedures and to analyse and evaluate analytical chemical data for process analysis and design.</td>
</tr>
<tr>
<td>Content:</td>
<td>1. Spectrochemical Measurement Methods</td>
</tr>
<tr>
<td></td>
<td>Ultraviolet and Visible Absorption Spectrometry</td>
</tr>
<tr>
<td></td>
<td>Infrared Spectrometry</td>
</tr>
<tr>
<td></td>
<td>Luminescence Spectrometry</td>
</tr>
<tr>
<td></td>
<td>Infrared Spectrometry</td>
</tr>
<tr>
<td></td>
<td>Light Scattering</td>
</tr>
<tr>
<td></td>
<td>2. Chromatographic Separation Methods</td>
</tr>
<tr>
<td></td>
<td>Mechanism of Retention</td>
</tr>
<tr>
<td></td>
<td>Mechanism of Dispersion</td>
</tr>
<tr>
<td></td>
<td>Chromatography Column Design</td>
</tr>
<tr>
<td></td>
<td>Optimization of Separation</td>
</tr>
<tr>
<td></td>
<td>3. Applications of Analytical Measurements in Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Determination of Phase Equilibrium Parameters</td>
</tr>
<tr>
<td></td>
<td>Determination of Binding Constants</td>
</tr>
<tr>
<td></td>
<td>Determination of Chemical and Physical Rate Constants</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Written or oral exam</td>
</tr>
<tr>
<td>Media:</td>
<td>Blackboard, overhead projector, beamer</td>
</tr>
</tbody>
</table>
Degree Programme: M.Sc. Biotechnology and Process Engineering

<table>
<thead>
<tr>
<th>Title of Module:</th>
<th>Advanced Theory of Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation:</td>
<td>ATPE</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Advanced Theory of Process Engineering</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr.-Ing. Jürgen Teifke</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr.-Ing. Jürgen Teifke</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Claus Werninger</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineer</td>
</tr>
<tr>
<td></td>
<td>Compulsory Class, Semester 1</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Lecture / 4 h/week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Fundamentals in Fluid Flow and Heat Transfer</td>
</tr>
</tbody>
</table>

Study Goals:

Knowledge:
- Thermodynamic behaviour of real fluids and mixtures
- Extended knowledge on diffusion and convection mass transfer
- Analogy between heat and mass transfer

Skills:
- Extend fundamental principles of thermodynamics to process fluids
- Calculate state and operational variables in typical processes
- Evaluate process operation according to the type and intensity of mass transfer
- Estimate material property data for process operation
- Set-up mass transfer models
- Solve mass transfer models (numerically with the help of software)

Expertise:
- Integrate thermodynamic and mass transfer calculations into a design process for various process operations
- Validate results from calculation with operational data

Content:

1. Thermodynamic Equilibrium
 - of pure components
 - of mixtures (VLE, VLLE)
2. Calculational methods to predict thermodynamic equilibrium
3. Mass Transfer
 - diffusion, diffusion coefficients
 - mass transfer models
 - mass transfer coefficients
 - mass transfer applications

Assessment:

Written or oral exam

Media:

Lecture Notes, Slides, Board, E-Learning

Literature:

- Sandler: Chemical and Engineering Thermodynamics, JOHN WILEY & SONS
- Bird, Stewart, Lightfoot: Transport Phenomena, JOHN WILEY & SONS
- Treybal:
<table>
<thead>
<tr>
<th></th>
<th>Mass-Transfer Operations, McGRAW-HILL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baehr, Stephan:</td>
</tr>
<tr>
<td></td>
<td>Heat and Mass Transfer, SPRINGER</td>
</tr>
<tr>
<td></td>
<td>Benitez:</td>
</tr>
<tr>
<td></td>
<td>Mass Transfer Operations, JOHN WILEY & SONS</td>
</tr>
<tr>
<td>Degree Program:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Title of Module:</td>
<td>Project Theory 1: Protein Factory I</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Project Theory 1: Protein Factory</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>PROFA TH1</td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Helmut Erdmann</td>
</tr>
</tbody>
</table>
| Lecturer: | Prof. Dr. Helmut Erdmann
Prof. Dr. Hans-Udo Peters |
| Language: | English |
| Assignment to Program: | M.Sc. Biotechnology and Process Engineering
Compulsory Class, Semester 2 |
| Class Type / Hours: | Seminar / 4 h per week |
| Workload: | Study time in class: 60 h
Study time at home: 120 h |
| Credits: | 6 in combination with PROFA TH2 |
| Requirements: | Advanced Theory of Cell Biology and Cell Culture Technology |
| Study Goals / Skills: | Knowledge:
Specific knowledge according to the project topic:
- Pathogens, infection, and innate immunity
- The adaptive immune system
- Therapeutic monoclonal antibody expression in mammalian cells
- The DHFR/MTX-amplification system |
| | Skills:
- Increased understanding of the application of therapeutic mAbs
- Molecular design of antibody production cell lines |
| | Expertise:
- Target oriented reading of literature to prepare for scientific projects |
<p>| Content: | Accompanying Lecture for Team Project Protein Factory |
| Assessment: | Written or oral exam |
| Media: | Slides, Paper |
| Literature: | Primary Literature as announced in class |</p>
<table>
<thead>
<tr>
<th>Degree Program:</th>
<th>M.Sc. Biotechnology and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Module:</td>
<td>Project Theory 2: Protein Factory II</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Project Theory 2: Protein Factory</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>PROFA TH2</td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Hans-Udo Peters</td>
</tr>
</tbody>
</table>
| Lecturer: | Prof. Dr. Hans-Udo Peters
| | Prof. Dr. Helmut Erdmann |
| Language: | English |
| Assignment to Program: | M.Sc. Biotechnology and Process Engineering
| | Compulsory Class, Semester 2 |
| Class Type / Hours: | Seminar / 4 h per week |
| Workload: | Study time in class: 60 h
| | Study time at home: 120 h |
| Credits: | 6 in combination with PROFA TH1 |
| Requirements: | Advanced Theory of Cell Biology and Cell Culture Technology |
| Study Goals / Skills: | **Knowledge:**
| | • Theoretical background of Anti-IL-8 production with CHO-DP12, ATCC CRL124451 comprising up-stream and down-stream-processing |
| | **Skills:**
| | • Explanation and discussion of general theoretical project backgrounds
| | • Explanation and discussion of experimental results taken from project work |
| | **Expertise:**
| | • Find, read, understand and integrate literature in the field of monoclonal antibody production, comprising the aspects mentioned under the previous points
<p>| | • Communicate scientific contents by oral presentations in English language |
| Content: | Accompanying Seminar for Team Project Protein Factory |
| Assessment: | Oral presentation or oral exam |
| Media: | Slides, Papers |
| Literature: | Primary Literature as announced in class |</p>
<table>
<thead>
<tr>
<th>Degree Program:</th>
<th>M.Sc. Biotechnology and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Module:</td>
<td>Team Project: Protein Factory</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Protein Factory</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>PROFA PRJ</td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Hans-Udo Peters</td>
</tr>
</tbody>
</table>
| **Lecturer:** | Prof. Dr. Hans-Udo Peters
| | Prof. Dr. Helmut Erdmann |
| **Language:** | English |
| **Assignment to Program:** | M.Sc. Biotechnology and Process Engineering
Optional Compulsory Class, Semester 2 |
| **Class Type / Hours:** | Project / 8 h per week |
| **Workload:** | Study time in class: 120 h
Study time at home: 240 h |
| **Credits:** | 12 |
| **Requirements:** | Advanced Theory of Cell Biology and Cell Culture Technology |
| **Study Goals / Skills:** | **Knowledge:**
- Introduction to basic tissue culture techniques
- Production and Purification of Anti-IL-8 with CHO-DP12, ATCC CRL124451
Skills:
- Handling of mammalian tissue cultures
- Assembling and operation of animal cell culture bioreactors for therapeutic protein production
- Separation and purification of monoclonal antibodies
Expertise:
- Design and realization of recombinant protein production using an eukaryotic expression system
- Presentation and discussion of experimental results comprising the relevant scientific literature
- Preparation of a written assignment |
| **Content:** | - One Week Introductory Lab-Course:
 “Basic Tissue Culture Techniques”
- Team Project: “Protein Factory”
 Project Objectives:
 Production and purification of monoclonal antibodies (Anti IL-8) with CHO-DP12, ATCC CRL12445 |
| **Assessment:** | Project report |
| **Media:** | Slides, papers |
| **Literature:** | Primary literature as announced in class |
Degree Programme:
M. Sc. Biotechnology and Process Engineering

Title of Module:
Project Theory: Chemical Process Engineering / Green Engineering

Abbreviation:
CPET

Title of Class:
Computer Aided Process Engineering (CAPE)

Semester:
2

Responsible for Module:
Prof. Dr.-Ing. Claus Werninger

Lecturer:
Prof. Dr.-Ing. Claus Werninger

Language:
English

Assignment to Programme:
M. Sc. Biotechnology and Process Engineering
Optional Compulsory Class, Semester 2

Class Type / Hours:
Lecture and Computer Laboratory / 2 & 2 h per week

Workload:
- Study time in class: 60 h
- Study time at home: 120 h

Credits:
6

Requirements:
- Participation in Lecture
- Advanced Theory of Process Engineering

Study Goals:

Knowledge:
- Learn about heuristic and rigorous design rules to design single equipment and processes
- Obtain basic knowledge on the importance of thermodynamic modelling for material property and thermodynamic state modelling

Skills:
- Learn to select appropriate path of reaction and separation for a process
- Apply state-of-the-art software for computer aided process engineering (CAPE)

Expertise:
- Integrate CAPE calculations into a design process
- Validate results from calculation with operational data
- Use CAPE in redesign existing processes

Content:
- Fundamentals of Process Design – Structure and Synthesis
- Chemical Reaction Schemes, Equilibrium and Reactor Design
- Design of Separation Sequence and Technology
- Process Analysis

Assessment:
Written or oral exam

Media:
Lecture Notes, Slides, Board, E-Learning, CAPE software

Literature:
- Seider, Seader, Lewin: *Process Design Principles*, JOHN WILEY & SONS
- Turton, Baille, Whiting, Shaewitz: *Analysis, Synthesis, and Design of Chemical Processes* PRENTICE HALL
- Biegler, Grossmann, Westerberg: *Systematic Methods of Chemical Process Design* PRENTICE HALL
- Douglas: *Conceptual Design of Chemical Processes*, McGRAW-HILL
- Schuler: *Prozesssimulation*, WILEY – VCH
| | Smith: Chemical Process Design and Integration
| | JOHN WILEY & SONS
<p>| | Blass: Entwicklung verfahrenstechnischer Prozesse, SPRINGER |</p>
<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Master of Biotechnology and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Module:</td>
<td>Project Theory: Chemical Process Engineering / Green Engineering</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>GET</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Green Engineering</td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. rer. nat. Jens Born</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. rer. nat. Jens Born</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M. Sc. Biotechnology and Process Engineering Optional Compulsory Class, Semester 2</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Seminar / 4 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Participation in Lecture Advanced Theory of Process Engineering</td>
</tr>
</tbody>
</table>
| **Study Goals / Skills:** | - Knowledge of approaches and methodologies for evaluating and improving the environmental performance of chemical processes and products
 | | - Design a process path with (almost) optimal parameters of energy and material consumption
 | | - Evaluate design alternatives under the constraint of sustainability
 | | - Apply renewable resources |
| **Content:** | - Introduction to environmental issues and risk concepts
 | | - Evaluation and improvement of environmental performance of chemical processes (Evaluating fates, exposures, and performance during process synthesis, green chemistry methods,)
 | | - Unit operations and pollution prevention
 | | - Process integration and environmental performance of a flow sheet based on life cycle concepts
 | | - Renewable resources – sustainable handling and processing strategies |
| **Assessment:** | Written report and oral presentation |
| **Media:** | Blackboard, overhead, presentation |
| **Literature:** | - Allen, Shonnard: Green Engineering, PRENTICE HALL
 | | - Seider, Seader, Lewin: Process Design Principles, JOHN WILEY & SONS
 | | - Turton, Baille, Whiting, Shaelwitz: Analysis, Synthesis, and Design of Chemical Processes PRENTICE HALL
 | | - Biegler, Grossmann, Westerberg: Systematic Methods of Chemical Process Design PRENTICE HALL
 | | - Douglas: Conceptual Design of Chemical Processes, McGRAW-HILL
<p>| | - Schuler: Prozesssimulation, WILEY – VCH |</p>
<table>
<thead>
<tr>
<th>Smith: Chemical Process Design and Integration, JOHN WILEY & SONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blass: Entwicklung verfahrenstechnischer Prozesse, SPRINGER</td>
</tr>
<tr>
<td>Degree Programme:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Title of Module:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Abbreviation:</td>
</tr>
<tr>
<td>Title of Class:</td>
</tr>
<tr>
<td>Semester:</td>
</tr>
<tr>
<td>Responsible for Module:</td>
</tr>
<tr>
<td>Lecturer:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Language:</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Class Type / Hours:</td>
</tr>
<tr>
<td>Workload:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Credits:</td>
</tr>
<tr>
<td>Requirements:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Study Goals:

Knowledge:
- Acquire specific knowledge according to the project topic

Skills:
- Apply scientific methods based on sustainability issues to match the principles of Green Engineering
- Increase proficiency with CAPE software
- Set-up operational plans for group members
- Arrange group work into working packages
- Communicate on milestones with group members and supervisor

Expertise:
- Project Management Principles
- Estimate the benefits of CAPE for research and design

Content:
A group of 2 – 4 students will work out a process design of a new process or an alternative to an existing process comprising basic layout of equipment and simulation of the process. An important aspect of the project work is the research on operational, kinetic and material data from literature or from experiment. Costs of process erection and operation are to be estimated by simple means. Appropriate hours in class will be spent to discuss problems in team with or without the professor. Results are to be presented orally by contributions from each team member and as a written report of the team.

Assessment:
Written report and oral presentation

Media:
Board, Overhead, presentation, CAPE software, E-Learning

Literature:
- Allen, Shonnard: Green Engineering PRENTICE HALL
- Seider, Seader, Lewin: Process Design Principles JOHN WILEY & SONS
- Turton, Baille, Whiting, Shaelwitz: Analysis, Synthesis, and Design of Chemical Processes
<table>
<thead>
<tr>
<th>PRENTICE HALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biegler, Grossmann, Westerberg:</td>
</tr>
<tr>
<td>Systematic Methods of Chemical Process Design</td>
</tr>
<tr>
<td>PRENTICE HALL</td>
</tr>
<tr>
<td>Douglas:</td>
</tr>
<tr>
<td>Conceptual Design of Chemical Processes</td>
</tr>
<tr>
<td>McGRAW-HILL</td>
</tr>
<tr>
<td>Schuler:</td>
</tr>
<tr>
<td>Prozesssimulation, WILEY – VCH</td>
</tr>
<tr>
<td>Smith:</td>
</tr>
<tr>
<td>Chemical Process Design and Integration</td>
</tr>
<tr>
<td>JOHN WILEY & SONS</td>
</tr>
<tr>
<td>Blass:</td>
</tr>
<tr>
<td>Entwicklung verfahrenstechnischer Prozesse</td>
</tr>
<tr>
<td>SPRINGER</td>
</tr>
<tr>
<td>Degree Programme:</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Title of Module:</td>
</tr>
<tr>
<td>Abbreviation:</td>
</tr>
<tr>
<td>Title of Class:</td>
</tr>
<tr>
<td>Semester:</td>
</tr>
<tr>
<td>Responsible for Module:</td>
</tr>
<tr>
<td>Lecturer:</td>
</tr>
<tr>
<td>Language:</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Class Type / Hours:</td>
</tr>
<tr>
<td>Workload:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Credits:</td>
</tr>
<tr>
<td>Requirements:</td>
</tr>
<tr>
<td>Study Goals / Skills:</td>
</tr>
<tr>
<td>Content:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
</tr>
<tr>
<td>Media:</td>
</tr>
<tr>
<td>Degree Programme:</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Title of Module:</td>
</tr>
<tr>
<td>Abbreviation:</td>
</tr>
<tr>
<td>Title of Class:</td>
</tr>
<tr>
<td>Semester:</td>
</tr>
<tr>
<td>Responsible for Module:</td>
</tr>
<tr>
<td>Lecturer:</td>
</tr>
<tr>
<td>Language:</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Class Type / Hours:</td>
</tr>
<tr>
<td>Workload:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Credits:</td>
</tr>
<tr>
<td>Requirements:</td>
</tr>
<tr>
<td>Study Goals / Skills:</td>
</tr>
<tr>
<td>Content:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
</tr>
<tr>
<td>Media:</td>
</tr>
<tr>
<td>Literature:</td>
</tr>
<tr>
<td>Degree Programme:</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Title of Module:</td>
</tr>
<tr>
<td>Abbreviation:</td>
</tr>
<tr>
<td>Title of Class:</td>
</tr>
<tr>
<td>Semester:</td>
</tr>
<tr>
<td>Responsible for Module:</td>
</tr>
<tr>
<td>Lecturer:</td>
</tr>
<tr>
<td>Language:</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Class Type / Hours:</td>
</tr>
<tr>
<td>Workload:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Credits:</td>
</tr>
<tr>
<td>Requirements:</td>
</tr>
<tr>
<td>Study Goals / Skills:</td>
</tr>
<tr>
<td>Content:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
</tr>
<tr>
<td>Media:</td>
</tr>
<tr>
<td>Literature:</td>
</tr>
</tbody>
</table>
Degree Programme:
M.Sc. Biotechnology and Process Engineering

Title of Module:
Project Theory:
Food Biotechnology and Processing 1

Abbreviation:
FBP I

Title of Class:
Food Biotechnology and Processing 1

Semester:
2

Responsible for Module:
Prof. Dr. Birte Nicolai

Lecturer:
Prof. Dr. Birte Nicolai

Language:
English

Assignment to Programme:
M. Sc. Biotechnology and Process Engineering
Optional Compulsory Class, Semester 2

Class Type / Hours:
Seminar / 4 h per week

Workload:
- Study time in class: 60 h
- Study time at home: 120 h

Credits:
6 in combination is FBP II

Requirements:
Knowledge of fundamental aspects of fermentation, processing and analytical methods

Study Goals

Knowledge:
- Learn about food biotechnological production methods
- Understand processes during food fermentation
- Learn about process parameters and analytical methods

Skills:
- Increase proficiency about food fermentations
- Set-up process conditions for food production
- Assess foods according to their analytical parameters

Expertise:
- Independent study of content
- Self-organization

Content:
During this seminar students learn the theoretical background of food biotechnology and processing. This is either done by presentation and by self-studies of the given literature.

Assessment:
Written or oral exam

Media:
Slides, blackboard, literature

Literature:
- Primary literature as announced in class
<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Biotechnology and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Module:</td>
<td>Project Theory:</td>
</tr>
<tr>
<td></td>
<td>Food Biotechnology and Processing 2</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>FBP II</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Food Biotechnology and Processing 2</td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Birte Nicolai</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. Birte Nicolai</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M. Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Optional Compulsory Class, Semester 2</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Seminar / 4 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6 in combination with FBP I</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Knowledge of fundamental aspects of fermentation, processing and analytical methods</td>
</tr>
<tr>
<td>Study Goals</td>
<td>Knowledge:</td>
</tr>
<tr>
<td></td>
<td>• Extend knowledge on preparation, presentation and interpretation of scientific results</td>
</tr>
<tr>
<td></td>
<td>• Extend knowledge on work with scientific literature</td>
</tr>
<tr>
<td></td>
<td>Skills:</td>
</tr>
<tr>
<td></td>
<td>• Improve presentation skills</td>
</tr>
<tr>
<td></td>
<td>• Communication and project follow-up with the group and the supervisor</td>
</tr>
<tr>
<td></td>
<td>Expertise:</td>
</tr>
<tr>
<td></td>
<td>• Analytical thinking</td>
</tr>
<tr>
<td>Content:</td>
<td>Accompanying seminar for team project “Food Biotechnology and Processing”. Students will prepare the team project and present the results to the group. Finally the group will discuss the results against the background of current literature to further develop the project.</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Oral presentation or oral exam</td>
</tr>
<tr>
<td>Media:</td>
<td>Slides, blackboard</td>
</tr>
<tr>
<td>Literature:</td>
<td>Primary literature as announced in class</td>
</tr>
</tbody>
</table>
Title of Module: Team Project: Food Biotechnology and Processing

Abbreviation: FBP P

Title of Class: Food Biotechnology and Processing (Team Project)

Semester: 2

Responsible for Module: Prof. Dr. Birte Nicolai

Lecturer: Prof. Dr. Birte Nicolai

Language: English

Assignment to Programme: M. Sc. Biotechnology and Process Engineering
Optional Compulsory Class, Semester 2

Class Type / Hours: Project / 8 h per week

Workload:
- Study time in class: 120 h
- Study time at home: 240 h

Credits: 12

Requirements: Knowledge of fundamental aspects of fermentation, processing and analytical methods

Study Goals

Knowledge:
- Acquire specific knowledge according to the project topic

Skills:
- Increase proficiency with analytical methods and production equipment
- Set-up plans for the experimental test design
- Arrange group work

Expertise:
- Project Management principles
- Analytical thinking

Content:
Students will be introduced to industrial food production by visiting food producing plants and doing food productions in a pilot plant. They will familiarize with the relevant process parameters and analytical methods. Based on the learning, they will work on a current scientific problem in food biotechnology.

Assessment: Project report

Media: Slides, blackboard, pilot plant equipment

Literature: Primary literature as announced in class
<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Biotechnology and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Module:</td>
<td>Elective Course – Professional Leadership and Rhetoric</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>EC-PLR</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Professional Leadership and Rhetoric</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Ralf Gorath</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Ralf Gorath</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Compulsory Class, Semester 1</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Lecture / 4 h per week – class size: minimum 7, maximum 20</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered Student to M.Sc. BPE or on request</td>
</tr>
</tbody>
</table>

Study Goals:

Knowledge:
- Acquire basic knowledge of HRM in academic views
- Acquire basic knowledge of rhetorics
- Acquire basic knowledge of verbal and non-verbal communication

Skills:
- Achieve and increase competence in speech
- Use “Active Listening” in personal management
- Perform “Coaching” as an active element of leadership
- Convincing interaction with employees and peers

Expertise:
- Competence in rhetoric – basics, metaphors and style
- Competence in human resources management
- Competence in structured communication

Content:
Personnel Management in academic views
Motivation and responsibility in HRM
Rhetorical craftsmanship – basics, metaphors, analogies, style
Active listening in practical management
Structured communication as a tool for effective interaction
Corporate communication culture
Formal authority and informal power
Praise and criticism in critical evaluation
Personnel recruiting and -development - and costs
Team development and coaching

Assessment:
Written exam or homework assignment or presentation

Media:
Board and presentation

Literature:
<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Biotechnology and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Module:</td>
<td>Elective Course – Identification and evaluation of relevant literature for scientific projects</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>EC-IEL</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Identification and evaluation of relevant literature for scientific projects</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Detlef Goelling</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. Detlef Goelling</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Compulsory Class, Semester 1</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Lecture / 2 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 30 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 60 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>3</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered Student to M.Sc. BPE or on request</td>
</tr>
<tr>
<td>Study Goals:</td>
<td>Knowledge:</td>
</tr>
<tr>
<td></td>
<td>• Acquire knowledge for scientific literature research</td>
</tr>
<tr>
<td></td>
<td>Skills:</td>
</tr>
<tr>
<td></td>
<td>• Increase scientific background for project work and for writing project report or thesis</td>
</tr>
<tr>
<td></td>
<td>• Increase project management skills</td>
</tr>
<tr>
<td></td>
<td>• Evaluation of scientific background for projects</td>
</tr>
<tr>
<td></td>
<td>Expertise:</td>
</tr>
<tr>
<td></td>
<td>• Definition of scientific status on project relevant topics</td>
</tr>
<tr>
<td></td>
<td>• Efficient and reliable literature research</td>
</tr>
<tr>
<td>Content:</td>
<td>Each student will be assigned a scientific topic. Then, students carry out a literature search according to their assignment. Finally, they document their findings in a written report.</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Project report</td>
</tr>
<tr>
<td>Media:</td>
<td>Blackboard, overhead projector, beamer, World Wide Web</td>
</tr>
<tr>
<td>Literature:</td>
<td>Medline</td>
</tr>
<tr>
<td>Degree Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Title of Module:</td>
<td>Elective Course – Quality systems in food industry</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>EC-QSFI</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Quality systems in food industry</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Birte Nicolai</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. Birte Nicolai</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Elective course, Semester 1</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Seminar / 4 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered Student to M.Sc. BPE or on request</td>
</tr>
<tr>
<td>Study Goals:</td>
<td>Knowledge:</td>
</tr>
<tr>
<td></td>
<td>• Learn about quality management systems, quality solving techniques and the specific requirements of the food industry</td>
</tr>
<tr>
<td></td>
<td>Skills:</td>
</tr>
<tr>
<td></td>
<td>• Apply quality solving techniques</td>
</tr>
<tr>
<td></td>
<td>• Understand framework in food industry</td>
</tr>
<tr>
<td></td>
<td>• Arrange group work</td>
</tr>
<tr>
<td></td>
<td>• Improve presentation skills</td>
</tr>
<tr>
<td></td>
<td>Expertise:</td>
</tr>
<tr>
<td></td>
<td>• Quality management principles</td>
</tr>
<tr>
<td>Content:</td>
<td>1.) General terms and definitions</td>
</tr>
<tr>
<td></td>
<td>2.) Historical development of quality management</td>
</tr>
<tr>
<td></td>
<td>3.) Framework in food industry</td>
</tr>
<tr>
<td></td>
<td>4.) Quality management and assurance standards</td>
</tr>
<tr>
<td></td>
<td>5.) Crisis management</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Oral presentation</td>
</tr>
<tr>
<td>Media:</td>
<td>Slides, videos, blackboard, case study, management training game</td>
</tr>
<tr>
<td>Literature:</td>
<td>▶ Doeg, C.: Crisis Management in the Food and Drinks Industry: A Practical Approach, Springer New York</td>
</tr>
<tr>
<td></td>
<td>▶ Quality Management standards</td>
</tr>
<tr>
<td></td>
<td>▶ Primary literature as announced in class</td>
</tr>
<tr>
<td>Degree Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Title of Module:</td>
<td>Elective Course – First-Time Manager</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>EC-FTM</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>First-Time Manager</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. Birte Nicolai</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. Birte Nicolai</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Seminar / 4 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered Student to M.Sc. BPE or on request</td>
</tr>
<tr>
<td>Study Goals:</td>
<td>Knowledge:</td>
</tr>
<tr>
<td></td>
<td>• Understand the role of a manager / leader</td>
</tr>
<tr>
<td></td>
<td>• Learn about the theoretical background and the practical application of management/ leadership elements</td>
</tr>
<tr>
<td></td>
<td>Skills:</td>
</tr>
<tr>
<td></td>
<td>• Apply management / leadership skills</td>
</tr>
<tr>
<td></td>
<td>• Arrange group work</td>
</tr>
<tr>
<td></td>
<td>• Improve presentation skills</td>
</tr>
<tr>
<td></td>
<td>Expertise:</td>
</tr>
<tr>
<td></td>
<td>• Management / leadership principles</td>
</tr>
<tr>
<td></td>
<td>• Interpersonal and communication skills</td>
</tr>
<tr>
<td>Content:</td>
<td>1.) Management /Leadership</td>
</tr>
<tr>
<td></td>
<td>2.) Winning hearts and minds</td>
</tr>
<tr>
<td></td>
<td>3.) Leading change</td>
</tr>
<tr>
<td></td>
<td>4.) Appraisals</td>
</tr>
<tr>
<td></td>
<td>5.) Coaching</td>
</tr>
<tr>
<td></td>
<td>6.) Problem solving and diagnostic techniques</td>
</tr>
<tr>
<td></td>
<td>7.) Presentation skills</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Oral presentation or project report</td>
</tr>
<tr>
<td>Media:</td>
<td>Slides, videos, blackboard, management training game, role-playing</td>
</tr>
<tr>
<td></td>
<td>• Kotter, J.P.: Our Iceberg is Melting, Palgrave Macmillan London</td>
</tr>
<tr>
<td></td>
<td>• Primary literature as announced in class</td>
</tr>
<tr>
<td>Degree Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Title of Module:</td>
<td>Elective Course – Bioanalysis</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>EC-BA</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Bioanalysis</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Dipl.-Biol. Uwe Krüger</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Dipl.-Biol. Uwe Krüger</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Compulsory Class, Semester 1 or 2</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Lecture / 4 h per week (blocked as 8 h every other week)</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered Student to M.Sc. BPE or on request</td>
</tr>
<tr>
<td>Study Goals:</td>
<td>Knowledge:</td>
</tr>
<tr>
<td></td>
<td>• Learn about the variety of biological (physicochemical) parameters and appropriate detectors</td>
</tr>
<tr>
<td></td>
<td>Skills:</td>
</tr>
<tr>
<td></td>
<td>• Apply knowledge in selecting, evaluating and using various physicochemical detectors and devices to provide relevant information on living matter</td>
</tr>
<tr>
<td></td>
<td>Expertise:</td>
</tr>
<tr>
<td></td>
<td>• Gain expertise in addressing bioanalytical tasks from molecular to macroscopic scale</td>
</tr>
<tr>
<td>Content:</td>
<td>The course focusses on problems how to define analytic tasks by matching physicochemical footprints of life with the appropriate detector equipment at various scales and how to derive the desired information from a dataset. In this context students will discuss on taking appropriate samples and also on some data conditioning and statistics. Furthermore, a glimpse on chemometrics has to be included.</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Oral presentation</td>
</tr>
<tr>
<td>Media:</td>
<td>Laboratory equipment, board, slides, handouts</td>
</tr>
<tr>
<td>Literature:</td>
<td>Will be provided according to specific experiments</td>
</tr>
<tr>
<td>Degree Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Title of Module:</td>
<td>Elective Course – Fluid Flow in Process Equipment</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>EC-FFPE</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Fluid Flow in Process Equipment</td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr.-Ing. Claus Werninger</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr.-Ing. Claus Werninger</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td></td>
<td>Compulsory Class, Semester 2</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Lecture / 2 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 30 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 60 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>3</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered Student to M.Sc. BPE or on request</td>
</tr>
<tr>
<td>Study Goals:</td>
<td>Knowledge:</td>
</tr>
<tr>
<td></td>
<td>- Fundamentals of (fluid) multiphase flow</td>
</tr>
<tr>
<td></td>
<td>- Get familiar with equipment to generate disperse phase</td>
</tr>
<tr>
<td></td>
<td>Skills:</td>
</tr>
<tr>
<td></td>
<td>- Design process equipment in terms of phase motion and phase contact time</td>
</tr>
<tr>
<td></td>
<td>Expertise:</td>
</tr>
<tr>
<td></td>
<td>- Propose appropriate equipment design for given multiphase reaction or separation problem</td>
</tr>
<tr>
<td>Content:</td>
<td>1. (Fluid) Particles: Generation and Motion</td>
</tr>
<tr>
<td></td>
<td>2. Interaction of phases in multiphase flow</td>
</tr>
<tr>
<td></td>
<td>3. Equipment design: Nozzles, Trays, Packings</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Homework assignment or project report</td>
</tr>
<tr>
<td>Media:</td>
<td>Board, slides</td>
</tr>
<tr>
<td>Literature:</td>
<td>As announced in class</td>
</tr>
<tr>
<td>Degree Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Title of Module:</td>
<td>Elective Courses - Design, Economy and Sustainability in Chemical Engineering</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>DES</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Design, Economy and Sustainability in Chemical Engineering</td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr. rer. nat. Jens Born</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. rer. nat. Jens Born</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering Elective Course, Semester 2</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Workshop / 4 h per week</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Registered Student to M.Sc. BPE or on request</td>
</tr>
<tr>
<td>Study Goals / Skills:</td>
<td>Basic knowledge and skills to design chemical processes with a holistic view under economic and ecologic constraints</td>
</tr>
<tr>
<td>Content:</td>
<td>1. Design concepts, principles and constraints</td>
</tr>
<tr>
<td></td>
<td>2. Product design - needs, ideas, selection methods, skills and tools</td>
</tr>
<tr>
<td></td>
<td>3. Plant design</td>
</tr>
<tr>
<td></td>
<td>Process and flow sheet development</td>
</tr>
<tr>
<td></td>
<td>Cost estimation and profitability</td>
</tr>
<tr>
<td></td>
<td>Basic principles of green chemistry and green engineering</td>
</tr>
<tr>
<td></td>
<td>Optimum design and design strategies</td>
</tr>
<tr>
<td></td>
<td>Software instruments</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Project report or oral presentation</td>
</tr>
<tr>
<td>Media:</td>
<td>Board, Slides, CAPE software</td>
</tr>
<tr>
<td>Literature:</td>
<td>➢ M. Peters, K. Timmerhaus:</td>
</tr>
<tr>
<td></td>
<td>Plant Design and Economics for Chemical Engineers McGRAW-HILL</td>
</tr>
<tr>
<td></td>
<td>➢ E. L. Cussler, G. D. Moggridge:</td>
</tr>
<tr>
<td></td>
<td>Chemical Product Design</td>
</tr>
<tr>
<td></td>
<td>CAMBRIDGE UNIVERSITY PRESS</td>
</tr>
<tr>
<td>Degree Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Title of Module:</td>
<td>Elective Courses – Disintegration of Particles and Cells</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>EC-DisInt</td>
</tr>
<tr>
<td>Title of Class:</td>
<td>Disintegration of Particles and Cells</td>
</tr>
<tr>
<td>Subtitle:</td>
<td>Using Stirred Media Mills in Down Stream Processing</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr.-Ing. Wolfgang F. Hess</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr.-Ing. Wolfgang F. Hess</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering Elective Class, Semester 1</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>Lecture, Workshop and Laboratory / 4 h per week (maximum class size: 15)</td>
</tr>
<tr>
<td>Workload:</td>
<td>Study time in class: 60 h</td>
</tr>
<tr>
<td></td>
<td>Study time at home: 120 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>6</td>
</tr>
<tr>
<td>Requirements:</td>
<td>Knowledge of fundamental aspects of Particle technology and Down Stream Processing</td>
</tr>
<tr>
<td>Study Goals / Skills:</td>
<td>On the basis of the latest scientific literature students will obtain knowledge of measuring techniques within the field of Particle Technology. Theory will be accomplished by practical experience in the lab. Students will be able to evaluate the results according to their real sense and practical use.</td>
</tr>
<tr>
<td>Content:</td>
<td>1. Basics of the physics of disintegration of particles and cells down to nano scale</td>
</tr>
<tr>
<td></td>
<td>2. Definition and measuring techniques for evaluation of the destruction effect</td>
</tr>
<tr>
<td></td>
<td>3. Scale up of comminution processes in ball mills</td>
</tr>
<tr>
<td></td>
<td>4. Incremental and cumulative processes</td>
</tr>
<tr>
<td></td>
<td>5. Practising laboratory experiments and evaluation of the processes</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Homework assignment or written project report and oral presentation</td>
</tr>
<tr>
<td>Media:</td>
<td>Scientific papers, computer, overhead projector, beamer</td>
</tr>
<tr>
<td>Literature:</td>
<td>➢ A.T. Jackson: Process Engineering in Biotechnology OPEN UNIVERSITY PRESS, Milton Keynes</td>
</tr>
<tr>
<td></td>
<td>➢ Current scientific papers as supplied by the lecturer</td>
</tr>
</tbody>
</table>
Degree Programme: M.Sc. Biotechnology and Process Engineering
Title of Module: Elective Courses – Particles and Cells Measuring Techniques
Abbreviation: EC-PartM
Title of Class: Particles and Cells Measuring Techniques
Subtitle: Measuring Particle Size Distributions and Evaluation
Semester: 1
Responsible for Module: Prof. Dr.-Ing. Wolfgang F. Hess
Lecturer: Prof. Dr.-Ing. Wolfgang F. Hess
Language: English
Assignment to Programme: M.Sc. Biotechnology and Process Engineering
Elective Class, Semester 1
Class Type / Hours: Lecture, Workshop and Laboratory / 4 h per week
(maximum class size: 15 students)
Workload:
Study time in class: 60 h
Study time at home: 120 h
Credits: 6
Requirements: Knowledge of fundamental aspects of Particle Technology and Down Stream Processing
Study Goals / Skills: On the basis of the latest scientific literature the students will obtain knowledge of measuring techniques within the field of Particle Technology and Down Stream Processing. Theory will be accomplished by practical experience in the lab. Students will be able to evaluate the results according to their real sense and practical use. The students will reach the competence to measure, evaluate and explain product properties regarding to Particle Technology, e.g. the particle size distribution, and to Down Stream Processing, e.g. disintegration of cells.
Content:
2. Basics of the physical measuring techniques measuring particles and cells in dispersions down to nano scale
3. Separation techniques in biotechnology and process engineering
4. Incremental and cumulative processes
5. State-of-the-art optical analyser techniques: Dispersion of laser light, dynamical dispersion
6. Comparability and reliability of the results to be used in process control and quality management
Assessment: Homework assignment or project report and oral presentation
Media: Scientific papers, computer, overhead projector, beamer
Literature:
- A. Zhong, Lin Wang: Characterization of Nanophase Materials
 WILEY-VCH, Weinheim
- Brian H. Kaye: Characterization of Powders and Aerosols
 WILEY-VCH, Weinheim
<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Biotechnology and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Module:</td>
<td>Master-Thesis</td>
</tr>
<tr>
<td>Abbreviation:</td>
<td>MA</td>
</tr>
<tr>
<td>Semester:</td>
<td>3</td>
</tr>
<tr>
<td>Responsible for Module:</td>
<td>Prof. Dr.-Ing. Claus Werninger</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Students will be supervised by one professor of their choice.</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Assignment to Programme:</td>
<td>M.Sc. Biotechnology and Process Engineering, Compulsory, Semester 3</td>
</tr>
<tr>
<td>Class Type / Hours:</td>
<td>n. a.</td>
</tr>
<tr>
<td>Workload:</td>
<td>900 h</td>
</tr>
<tr>
<td>Credits:</td>
<td>30</td>
</tr>
<tr>
<td>Requirements:</td>
<td>See Study Regulations (Prüfungs- and Studienordnung)</td>
</tr>
<tr>
<td>Study Goals:</td>
<td>The student works independently on a problem preferably related to the field of biotechnology and process engineering. He or she uses scientific methods acquired during his participation in this programme. The student is capable to manipulate, discuss and display the data he or she collected for his/her work.</td>
</tr>
<tr>
<td>Content:</td>
<td>according to individual problem description</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Written report, oral presentation and defence (60 min.) Assessment of all contributions will be accomplished by the supervising professor and one of his/her colleagues.</td>
</tr>
<tr>
<td>Media:</td>
<td>n. a.</td>
</tr>
<tr>
<td>Literature:</td>
<td>n. a.</td>
</tr>
</tbody>
</table>