TY - JOUR AU - Oliver Bott AU - Klaus Dresing AU - Markus Wagner AU - Björn-Werner Raab AU - Michael Teistler AB - Mobile image intensifier systems (C-arms) are used frequently in orthopedic and reconstructive surgery, especially in trauma and emergency settings, but image quality and radiation exposure levels may vary widely, depending on the extent of the C-arm operator s knowledge and experience. Current training programs consist mainly of theoretical instruction in C-arm operation, the physical foundations of radiography, and radiation avoidance, and are largely lacking in hands-on application. A computer-based simulation program such as that tested by the authors may be one way to improve the effectiveness of C-arm training. In computer simulations of various scenarios commonly encountered in the operating room, trainees using the virtX program interact with three-dimensional models to test their knowledge base and improve their skill levels. Radiographs showing the simulated patient anatomy and surgical implants are “reconstructed” from data computed on the basis of the trainee s positioning of models of a C-arm, patient, and table, and are displayed in real time on the desktop monitor. Trainee performance is signaled in real time by color graphics in several control panels and, on completion of the exercise, is compared in detail with the performance of an expert operator. Testing of this computer-based training program in continuing medical education courses for operating room personnel showed an improvement in the overall understanding of underlying principles of intraoperative radiography performed with a C-arm, with resultant higher image quality, lower overall radiation exposure, and greater time efficiency. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.313105125/-/DC1.© RSNA, 2011 BT - RadioGraphics DO - 10.1148/rg.313105125 M1 - 3 N1 - PMID: 21357414 N2 - Mobile image intensifier systems (C-arms) are used frequently in orthopedic and reconstructive surgery, especially in trauma and emergency settings, but image quality and radiation exposure levels may vary widely, depending on the extent of the C-arm operator s knowledge and experience. Current training programs consist mainly of theoretical instruction in C-arm operation, the physical foundations of radiography, and radiation avoidance, and are largely lacking in hands-on application. A computer-based simulation program such as that tested by the authors may be one way to improve the effectiveness of C-arm training. In computer simulations of various scenarios commonly encountered in the operating room, trainees using the virtX program interact with three-dimensional models to test their knowledge base and improve their skill levels. Radiographs showing the simulated patient anatomy and surgical implants are “reconstructed” from data computed on the basis of the trainee s positioning of models of a C-arm, patient, and table, and are displayed in real time on the desktop monitor. Trainee performance is signaled in real time by color graphics in several control panels and, on completion of the exercise, is compared in detail with the performance of an expert operator. Testing of this computer-based training program in continuing medical education courses for operating room personnel showed an improvement in the overall understanding of underlying principles of intraoperative radiography performed with a C-arm, with resultant higher image quality, lower overall radiation exposure, and greater time efficiency. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.313105125/-/DC1.© RSNA, 2011 PY - 2011 SP - E65 EP - E75 T2 - RadioGraphics TI - Informatics in Radiology: Use of a C-Arm Fluoroscopy Simulator to Support Training in Intraoperative Radiography UR - https://doi.org/10.1148/rg.313105125 VL - 31 ER -