TY - JOUR KW - Energy storage KW - Fluid KW - Flywheel KW - Kinetic energy KW - Variable moment of inertia KW - Variable inertia flywheel AU - Prof. Dr. Clemens Jauch AU - Rebecca Jost AU - Peter Kloft AB -

A novel variable inertia flywheel that uses the mass of a rotating hydraulic fluid is proposed in this paper. In contrast to variable inertia flywheels that use solid masses, this flywheel stands out for its simplicity. In contrast to many other common energy storages, it does not require any environmentally harmful, rare or expensive materials. The basic working principle and the equations that cover the hydraulic behaviour, the pneumatic behaviour and the energy from angular momentum are introduced. These equations are applied to the geometry of the proposed flywheel concept, which allows quantifying the pressures that act on the different mechanical flywheel components. These pressures, together with the centrifugal acceleration from rotation, lead to the loads that have to be withstood by the mechanical components. A simple method for quantifying these loads, and for dimensioning the mechanical components, allows deriving the stationary masses and inertias. A parameter study is conducted, in which different parameters of the flywheel are varied in order to find the maxima in energy density and specific energy. The results of this parameter study reveal that the proposed hydraulic variable inertia flywheel is a very simple and safe energy storage that could provide AC power systems with inertia and control power to support their frequency.

BT - Applied Energy CY - United Kingdom DA - 02/2024 DO - https://doi.org/10.1016/j.apenergy.2024.122830 M3 - Research Article N2 -

A novel variable inertia flywheel that uses the mass of a rotating hydraulic fluid is proposed in this paper. In contrast to variable inertia flywheels that use solid masses, this flywheel stands out for its simplicity. In contrast to many other common energy storages, it does not require any environmentally harmful, rare or expensive materials. The basic working principle and the equations that cover the hydraulic behaviour, the pneumatic behaviour and the energy from angular momentum are introduced. These equations are applied to the geometry of the proposed flywheel concept, which allows quantifying the pressures that act on the different mechanical flywheel components. These pressures, together with the centrifugal acceleration from rotation, lead to the loads that have to be withstood by the mechanical components. A simple method for quantifying these loads, and for dimensioning the mechanical components, allows deriving the stationary masses and inertias. A parameter study is conducted, in which different parameters of the flywheel are varied in order to find the maxima in energy density and specific energy. The results of this parameter study reveal that the proposed hydraulic variable inertia flywheel is a very simple and safe energy storage that could provide AC power systems with inertia and control power to support their frequency.

PB - Elsevier PP - United Kingdom PY - 2024 EP - 16 T2 - Applied Energy TI - Hydraulic variable inertia flywheel UR - https://authors.elsevier.com/sd/article/S0306-2619(24)00213-7 VL - 360 SN - 0306-2619 ER -